Win32_MemoryArray

The Win32_MemoryArray WMI class represents the properties of the computer system memory array and mapped addresses.

The Win32_MemoryArray WMI class represents the properties of the computer system memory array and mapped addresses.

Methods

Win32_MemoryArray has no methods. Inherited methods (Reset and SetPowerState) are not implemented.

Properties

Win32_MemoryArray returns 39 properties:

'Access','AdditionalErrorData','Availability','BlockSize','Caption',
'ConfigManagerErrorCode','ConfigManagerUserConfig','CorrectableError','CreationClassName','Description',
'DeviceID','EndingAddress','ErrorAccess','ErrorAddress','ErrorCleared','ErrorData',
'ErrorDataOrder','ErrorDescription','ErrorGranularity','ErrorInfo','ErrorMethodology',
'ErrorResolution','ErrorTime','ErrorTransferSize','InstallDate','LastErrorCode','Name','NumberOfBlocks',
'OtherErrorDescription','PNPDeviceID','PowerManagementCapabilities','PowerManagementSupported','Purpose',
'StartingAddress','Status','StatusInfo','SystemCreationClassName','SystemLevelAddress','SystemName'

Unless explicitly marked as writeable, all properties are read-only. Read all properties for all instances:

Get-CimInstance -ClassName Win32_MemoryArray -Property *

Most WMI classes return one or more instances.

When Get-CimInstance returns no result, then apparently no instances of class Win32_MemoryArray exist. This is normal behavior.

Either the class is not implemented on your system (may be deprecated or due to missing drivers, i.e. CIM_VideoControllerResolution), or there are simply no physical representations of this class currently available (i.e. Win32_TapeDrive).

Access

UINT16

Type of media access available.

Access returns a numeric value. To translate it into a meaningful text, use any of the following approaches:

Use a PowerShell Hashtable
$Access_map = @{
      0 = 'Unknown'
      1 = 'Readable'
      2 = 'Writeable'
      3 = 'Read/Write Supported'
      4 = 'Write Once'
}
Use a switch statement
switch([int]$value)
{
  0          {'Unknown'}
  1          {'Readable'}
  2          {'Writeable'}
  3          {'Read/Write Supported'}
  4          {'Write Once'}
  default    {"$value"}
}
Use Enum structure
Enum EnumAccess
{
  Unknown               = 0
  Readable              = 1
  Writeable             = 2
  ReadWrite_Supported   = 3
  Write_Once            = 4
}

Examples

Use $Access_map in a calculated property for Select-Object
<# 
  this example uses a hashtable to translate raw numeric values for 
  property "Access" to friendly text

  Note: to use other properties than "Access", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Access" 
# to translate other properties, use their translation table instead
$Access_map = @{
      0 = 'Unknown'
      1 = 'Readable'
      2 = 'Writeable'
      3 = 'Read/Write Supported'
      4 = 'Write Once'
}

#endregion define hashtable

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "Access", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$Access = @{
  Name = 'Access'
  Expression = {
    # property is an array, so process all values
    $value = $_.Access
    $Access_map[[int]$value]
  }  
}
#endregion define calculated property

# retrieve the instances, and output the properties "Caption" and "Access". The latter
# is defined by the hashtable in $Access: 
Get-CimInstance -Class Win32_MemoryArray | Select-Object -Property Caption, $Access

# ...or dump content of property Access:
$friendlyValues = Get-CimInstance -Class Win32_MemoryArray | 
    Select-Object -Property $Access |
    Select-Object -ExpandProperty Access

# output values
$friendlyValues

# output values as comma separated list
$friendlyValues -join ', '

# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $Access_map to directly translate raw values from an instance
<# 
  this example uses a hashtable to manually translate raw numeric values 
  for property "Win32_MemoryArray" to friendly text. This approach is ideal when
  there is just one instance to work with.

  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Win32_MemoryArray" 
# to translate other properties, use their translation table instead
$Access_map = @{
      0 = 'Unknown'
      1 = 'Readable'
      2 = 'Writeable'
      3 = 'Read/Write Supported'
      4 = 'Write Once'
}

#endregion define hashtable

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to illustrate
  the number-to-text translation. To process all instances, replace
  "Select-Object -First 1" with a "Foreach-Object" loop, and use
  the iterator variable $_ instead of $instance
#>

# query the property
$rawValue = $instance.Access  

# translate raw value to friendly text:
$friendlyName = $Access_map[[int]$rawValue]

# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<# 
  this example uses a switch clause to translate raw numeric 
  values for property "Access" to friendly text. The switch
  clause is embedded into a calculated property so there is
  no need to refer to external variables for translation.

  Note: to use other properties than "Access", look up the appropriate 
  translation switch clause for the property you would like to use instead.
#>

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "Access", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$Access = @{
  Name = 'Access'
  Expression = {
    # property is an array, so process all values
    $value = $_.Access
    
    switch([int]$value)
      {
        0          {'Unknown'}
        1          {'Readable'}
        2          {'Writeable'}
        3          {'Read/Write Supported'}
        4          {'Write Once'}
        default    {"$value"}
      }
      
  }  
}
#endregion define calculated property

# retrieve all instances...
Get-CimInstance -ClassName Win32_MemoryArray | 
  # ...and output properties "Caption" and "Access". The latter is defined
  # by the hashtable in $Access:
  Select-Object -Property Caption, $Access
Use the Enum from above to auto-translate the code values
<# 
  this example translates raw values by means of type conversion
  the friendly names are defined as enumeration using the
  keyword "enum" (PowerShell 5 or better)
  
  The raw value(s) are translated to friendly text by 
  simply converting them into the enum type.
  
  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  enum definition for the property you would like to use instead.
#>


#region define enum with value-to-text translation:
Enum EnumAccess
{
  Unknown               = 0
  Readable              = 1
  Writeable             = 2
  ReadWrite_Supported   = 3
  Write_Once            = 4
}

#endregion define enum

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to focus on
  the number-to-text type conversion. 
  
  To process all instances, replace   "Select-Object -First 1" 
  with a "Foreach-Object" loop, and use the iterator variable 
  $_ instead of $instance
#>

# query the property:
$rawValue = $instance.Access

#region using strict type conversion

<#
  Note: strict type conversion fails if the raw value is 
  not defined by the enum. So if the list of allowable values
  was extended and the enum does not match the value,
  an exception is thrown
#>

# convert the property to the enum **Access** 
[EnumAccess]$rawValue 

# get a comma-separated string:
[EnumAccess]$rawValue -join ',' 
#endregion

#region using operator "-as"

<#
  Note: the operator "-as" accepts values not defined
  by the enum and returns $null instead of throwing
  an exception
#>

$rawValue -as [EnumAccess]
#endregion

Enums must cover all possible values. If Access returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.

AdditionalErrorData

UINT8 ARRAY

Array of additional error information. An example is Error Checking and Correcting (ECC) Syndrome, or the return of the check bits if a cyclical redundancy check (CRC) based ErrorMethodology value is used. In the latter case, if a single-bit error is recognized and the CRC algorithm is known, it is possible to determine the exact bit that failed. This type of data (ECC Syndrome, Check Bit, Parity Bit data, or other vendor-supplied information) is included in this field. This property is used only when the ErrorInfo property is not equal to 3.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, AdditionalErrorData

Availability

UINT16

Availability and status of the device.

Availability returns a numeric value. To translate it into a meaningful text, use any of the following approaches:

Use a PowerShell Hashtable
$Availability_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'Running/Full Power'
      4 = 'Warning'
      5 = 'In Test'
      6 = 'Not Applicable'
      7 = 'Power Off'
      8 = 'Off Line'
      9 = 'Off Duty'
     10 = 'Degraded'
     11 = 'Not Installed'
     12 = 'Install Error'
     13 = 'Power Save - Unknown'
     14 = 'Power Save - Low Power Mode'
     15 = 'Power Save - Standby'
     16 = 'Power Cycle'
     17 = 'Power Save - Warning'
     18 = 'Paused'
     19 = 'Not Ready'
     20 = 'Not Configured'
     21 = 'Quiesced'
}
Use a switch statement
switch([int]$value)
{
  1          {'Other'}
  2          {'Unknown'}
  3          {'Running/Full Power'}
  4          {'Warning'}
  5          {'In Test'}
  6          {'Not Applicable'}
  7          {'Power Off'}
  8          {'Off Line'}
  9          {'Off Duty'}
  10         {'Degraded'}
  11         {'Not Installed'}
  12         {'Install Error'}
  13         {'Power Save - Unknown'}
  14         {'Power Save - Low Power Mode'}
  15         {'Power Save - Standby'}
  16         {'Power Cycle'}
  17         {'Power Save - Warning'}
  18         {'Paused'}
  19         {'Not Ready'}
  20         {'Not Configured'}
  21         {'Quiesced'}
  default    {"$value"}
}
Use Enum structure
Enum EnumAvailability
{
  Other                       = 1
  Unknown                     = 2
  RunningFull_Power           = 3
  Warning                     = 4
  In_Test                     = 5
  Not_Applicable              = 6
  Power_Off                   = 7
  Off_Line                    = 8
  Off_Duty                    = 9
  Degraded                    = 10
  Not_Installed               = 11
  Install_Error               = 12
  Power_Save_Unknown          = 13
  Power_Save_Low_Power_Mode   = 14
  Power_Save_Standby          = 15
  Power_Cycle                 = 16
  Power_Save_Warning          = 17
  Paused                      = 18
  Not_Ready                   = 19
  Not_Configured              = 20
  Quiesced                    = 21
}

Examples

Use $Availability_map in a calculated property for Select-Object
<# 
  this example uses a hashtable to translate raw numeric values for 
  property "Availability" to friendly text

  Note: to use other properties than "Availability", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Availability" 
# to translate other properties, use their translation table instead
$Availability_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'Running/Full Power'
      4 = 'Warning'
      5 = 'In Test'
      6 = 'Not Applicable'
      7 = 'Power Off'
      8 = 'Off Line'
      9 = 'Off Duty'
     10 = 'Degraded'
     11 = 'Not Installed'
     12 = 'Install Error'
     13 = 'Power Save - Unknown'
     14 = 'Power Save - Low Power Mode'
     15 = 'Power Save - Standby'
     16 = 'Power Cycle'
     17 = 'Power Save - Warning'
     18 = 'Paused'
     19 = 'Not Ready'
     20 = 'Not Configured'
     21 = 'Quiesced'
}

#endregion define hashtable

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "Availability", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$Availability = @{
  Name = 'Availability'
  Expression = {
    # property is an array, so process all values
    $value = $_.Availability
    $Availability_map[[int]$value]
  }  
}
#endregion define calculated property

# retrieve the instances, and output the properties "Caption" and "Availability". The latter
# is defined by the hashtable in $Availability: 
Get-CimInstance -Class Win32_MemoryArray | Select-Object -Property Caption, $Availability

# ...or dump content of property Availability:
$friendlyValues = Get-CimInstance -Class Win32_MemoryArray | 
    Select-Object -Property $Availability |
    Select-Object -ExpandProperty Availability

# output values
$friendlyValues

# output values as comma separated list
$friendlyValues -join ', '

# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $Availability_map to directly translate raw values from an instance
<# 
  this example uses a hashtable to manually translate raw numeric values 
  for property "Win32_MemoryArray" to friendly text. This approach is ideal when
  there is just one instance to work with.

  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Win32_MemoryArray" 
# to translate other properties, use their translation table instead
$Availability_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'Running/Full Power'
      4 = 'Warning'
      5 = 'In Test'
      6 = 'Not Applicable'
      7 = 'Power Off'
      8 = 'Off Line'
      9 = 'Off Duty'
     10 = 'Degraded'
     11 = 'Not Installed'
     12 = 'Install Error'
     13 = 'Power Save - Unknown'
     14 = 'Power Save - Low Power Mode'
     15 = 'Power Save - Standby'
     16 = 'Power Cycle'
     17 = 'Power Save - Warning'
     18 = 'Paused'
     19 = 'Not Ready'
     20 = 'Not Configured'
     21 = 'Quiesced'
}

#endregion define hashtable

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to illustrate
  the number-to-text translation. To process all instances, replace
  "Select-Object -First 1" with a "Foreach-Object" loop, and use
  the iterator variable $_ instead of $instance
#>

# query the property
$rawValue = $instance.Availability  

# translate raw value to friendly text:
$friendlyName = $Availability_map[[int]$rawValue]

# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<# 
  this example uses a switch clause to translate raw numeric 
  values for property "Availability" to friendly text. The switch
  clause is embedded into a calculated property so there is
  no need to refer to external variables for translation.

  Note: to use other properties than "Availability", look up the appropriate 
  translation switch clause for the property you would like to use instead.
#>

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "Availability", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$Availability = @{
  Name = 'Availability'
  Expression = {
    # property is an array, so process all values
    $value = $_.Availability
    
    switch([int]$value)
      {
        1          {'Other'}
        2          {'Unknown'}
        3          {'Running/Full Power'}
        4          {'Warning'}
        5          {'In Test'}
        6          {'Not Applicable'}
        7          {'Power Off'}
        8          {'Off Line'}
        9          {'Off Duty'}
        10         {'Degraded'}
        11         {'Not Installed'}
        12         {'Install Error'}
        13         {'Power Save - Unknown'}
        14         {'Power Save - Low Power Mode'}
        15         {'Power Save - Standby'}
        16         {'Power Cycle'}
        17         {'Power Save - Warning'}
        18         {'Paused'}
        19         {'Not Ready'}
        20         {'Not Configured'}
        21         {'Quiesced'}
        default    {"$value"}
      }
      
  }  
}
#endregion define calculated property

# retrieve all instances...
Get-CimInstance -ClassName Win32_MemoryArray | 
  # ...and output properties "Caption" and "Availability". The latter is defined
  # by the hashtable in $Availability:
  Select-Object -Property Caption, $Availability
Use the Enum from above to auto-translate the code values
<# 
  this example translates raw values by means of type conversion
  the friendly names are defined as enumeration using the
  keyword "enum" (PowerShell 5 or better)
  
  The raw value(s) are translated to friendly text by 
  simply converting them into the enum type.
  
  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  enum definition for the property you would like to use instead.
#>


#region define enum with value-to-text translation:
Enum EnumAvailability
{
  Other                       = 1
  Unknown                     = 2
  RunningFull_Power           = 3
  Warning                     = 4
  In_Test                     = 5
  Not_Applicable              = 6
  Power_Off                   = 7
  Off_Line                    = 8
  Off_Duty                    = 9
  Degraded                    = 10
  Not_Installed               = 11
  Install_Error               = 12
  Power_Save_Unknown          = 13
  Power_Save_Low_Power_Mode   = 14
  Power_Save_Standby          = 15
  Power_Cycle                 = 16
  Power_Save_Warning          = 17
  Paused                      = 18
  Not_Ready                   = 19
  Not_Configured              = 20
  Quiesced                    = 21
}

#endregion define enum

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to focus on
  the number-to-text type conversion. 
  
  To process all instances, replace   "Select-Object -First 1" 
  with a "Foreach-Object" loop, and use the iterator variable 
  $_ instead of $instance
#>

# query the property:
$rawValue = $instance.Availability

#region using strict type conversion

<#
  Note: strict type conversion fails if the raw value is 
  not defined by the enum. So if the list of allowable values
  was extended and the enum does not match the value,
  an exception is thrown
#>

# convert the property to the enum **Availability** 
[EnumAvailability]$rawValue 

# get a comma-separated string:
[EnumAvailability]$rawValue -join ',' 
#endregion

#region using operator "-as"

<#
  Note: the operator "-as" accepts values not defined
  by the enum and returns $null instead of throwing
  an exception
#>

$rawValue -as [EnumAvailability]
#endregion

Enums must cover all possible values. If Availability returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.

BlockSize

UINT64 “BYTES”

Size in bytes of the blocks that form this storage extent. If unknown or if a block concept is not valid (for example, for aggregate extents, memory or logical disks), enter a 1.

For more information about using uint64 values in scripts, see Scripting in WMI.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, BlockSize

Caption

STRING MAX 64 CHAR

Short description of the object a one-line string.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, Caption

ConfigManagerErrorCode

UINT32

Windows Configuration Manager error code.

ConfigManagerErrorCode returns a numeric value. To translate it into a meaningful text, use any of the following approaches:

Use a PowerShell Hashtable
$ConfigManagerErrorCode_map = @{
      0 = 'This device is working properly.'
      1 = 'This device is not configured correctly.'
      2 = 'Windows cannot load the driver for this device.'
      3 = 'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'
      4 = 'This device is not working properly. One of its drivers or your registry might be corrupted.'
      5 = 'The driver for this device needs a resource that Windows cannot manage.'
      6 = 'The boot configuration for this device conflicts with other devices.'
      7 = 'Cannot filter.'
      8 = 'The driver loader for the device is missing.'
      9 = 'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'
     10 = 'This device cannot start.'
     11 = 'This device failed.'
     12 = 'This device cannot find enough free resources that it can use.'
     13 = 'Windows cannot verify this device''s resources.'
     14 = 'This device cannot work properly until you restart your computer.'
     15 = 'This device is not working properly because there is probably a re-enumeration problem.'
     16 = 'Windows cannot identify all the resources this device uses.'
     17 = 'This device is asking for an unknown resource type.'
     18 = 'Reinstall the drivers for this device.'
     19 = 'Failure using the VxD loader.'
     20 = 'Your registry might be corrupted.'
     21 = 'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'
     22 = 'This device is disabled.'
     23 = 'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'
     24 = 'This device is not present, is not working properly, or does not have all its drivers installed.'
     25 = 'Windows is still setting up this device.'
     26 = 'Windows is still setting up this device.'
     27 = 'This device does not have valid log configuration.'
     28 = 'The drivers for this device are not installed.'
     29 = 'This device is disabled because the firmware of the device did not give it the required resources.'
     30 = 'This device is using an Interrupt Request (IRQ) resource that another device is using.'
     31 = 'This device is not working properly because Windows cannot load the drivers required for this device.'
}
Use a switch statement
switch([int]$value)
{
  0          {'This device is working properly.'}
  1          {'This device is not configured correctly.'}
  2          {'Windows cannot load the driver for this device.'}
  3          {'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'}
  4          {'This device is not working properly. One of its drivers or your registry might be corrupted.'}
  5          {'The driver for this device needs a resource that Windows cannot manage.'}
  6          {'The boot configuration for this device conflicts with other devices.'}
  7          {'Cannot filter.'}
  8          {'The driver loader for the device is missing.'}
  9          {'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'}
  10         {'This device cannot start.'}
  11         {'This device failed.'}
  12         {'This device cannot find enough free resources that it can use.'}
  13         {'Windows cannot verify this device''s resources.'}
  14         {'This device cannot work properly until you restart your computer.'}
  15         {'This device is not working properly because there is probably a re-enumeration problem.'}
  16         {'Windows cannot identify all the resources this device uses.'}
  17         {'This device is asking for an unknown resource type.'}
  18         {'Reinstall the drivers for this device.'}
  19         {'Failure using the VxD loader.'}
  20         {'Your registry might be corrupted.'}
  21         {'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'}
  22         {'This device is disabled.'}
  23         {'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'}
  24         {'This device is not present, is not working properly, or does not have all its drivers installed.'}
  25         {'Windows is still setting up this device.'}
  26         {'Windows is still setting up this device.'}
  27         {'This device does not have valid log configuration.'}
  28         {'The drivers for this device are not installed.'}
  29         {'This device is disabled because the firmware of the device did not give it the required resources.'}
  30         {'This device is using an Interrupt Request (IRQ) resource that another device is using.'}
  31         {'This device is not working properly because Windows cannot load the drivers required for this device.'}
  default    {"$value"}
}
Use Enum structure
Enum EnumConfigManagerErrorCode
{
  This_device_is_working_properly                              = 0
  This_device_is_not_configured_correctly                      = 1
  Windows_cannot_load_the_driver_for_this_device               = 2
  The_driver_for_this_device_might_be_corrupted_or_your_system_may_be_running_low_on_memory_or_other_resources = 3
  This_device_is_not_working_properly_One_of_its_drivers_or_your_registry_might_be_corrupted = 4
  The_driver_for_this_device_needs_a_resource_that_Windows_cannot_manage = 5
  The_boot_configuration_for_this_device_conflicts_with_other_devices = 6
  Cannot_filter                                                = 7
  The_driver_loader_for_the_device_is_missing                  = 8
  This_device_is_not_working_properly_because_the_controlling_firmware_is_reporting_the_resources_for_the_device_incorrectly = 9
  This_device_cannot_start                                     = 10
  This_device_failed                                           = 11
  This_device_cannot_find_enough_free_resources_that_it_can_use = 12
  Windows_cannot_verify_this_devices_resources                 = 13
  This_device_cannot_work_properly_until_you_restart_your_computer = 14
  This_device_is_not_working_properly_because_there_is_probably_a_re_enumeration_problem = 15
  Windows_cannot_identify_all_the_resources_this_device_uses   = 16
  This_device_is_asking_for_an_unknown_resource_type           = 17
  Reinstall_the_drivers_for_this_device                        = 18
  Failure_using_the_VxD_loader                                 = 19
  Your_registry_might_be_corrupted                             = 20
  System_failure_Try_changing_the_driver_for_this_device_If_that_does_not_work_see_your_hardware_documentation_Windows_is_removing_this_device = 21
  This_device_is_disabled                                      = 22
  System_failure_Try_changing_the_driver_for_this_device_If_that_doesnt_work_see_your_hardware_documentation = 23
  This_device_is_not_present_is_not_working_properly_or_does_not_have_all_its_drivers_installed = 24
  Windows_is_still_setting_up_this_device1                     = 25
  Windows_is_still_setting_up_this_device2                     = 26
  This_device_does_not_have_valid_log_configuration            = 27
  The_drivers_for_this_device_are_not_installed                = 28
  This_device_is_disabled_because_the_firmware_of_the_device_did_not_give_it_the_required_resources = 29
  This_device_is_using_an_Interrupt_Request_IRQ_resource_that_another_device_is_using = 30
  This_device_is_not_working_properly_because_Windows_cannot_load_the_drivers_required_for_this_device = 31
}

Examples

Use $ConfigManagerErrorCode_map in a calculated property for Select-Object
<# 
  this example uses a hashtable to translate raw numeric values for 
  property "ConfigManagerErrorCode" to friendly text

  Note: to use other properties than "ConfigManagerErrorCode", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "ConfigManagerErrorCode" 
# to translate other properties, use their translation table instead
$ConfigManagerErrorCode_map = @{
      0 = 'This device is working properly.'
      1 = 'This device is not configured correctly.'
      2 = 'Windows cannot load the driver for this device.'
      3 = 'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'
      4 = 'This device is not working properly. One of its drivers or your registry might be corrupted.'
      5 = 'The driver for this device needs a resource that Windows cannot manage.'
      6 = 'The boot configuration for this device conflicts with other devices.'
      7 = 'Cannot filter.'
      8 = 'The driver loader for the device is missing.'
      9 = 'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'
     10 = 'This device cannot start.'
     11 = 'This device failed.'
     12 = 'This device cannot find enough free resources that it can use.'
     13 = 'Windows cannot verify this device''s resources.'
     14 = 'This device cannot work properly until you restart your computer.'
     15 = 'This device is not working properly because there is probably a re-enumeration problem.'
     16 = 'Windows cannot identify all the resources this device uses.'
     17 = 'This device is asking for an unknown resource type.'
     18 = 'Reinstall the drivers for this device.'
     19 = 'Failure using the VxD loader.'
     20 = 'Your registry might be corrupted.'
     21 = 'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'
     22 = 'This device is disabled.'
     23 = 'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'
     24 = 'This device is not present, is not working properly, or does not have all its drivers installed.'
     25 = 'Windows is still setting up this device.'
     26 = 'Windows is still setting up this device.'
     27 = 'This device does not have valid log configuration.'
     28 = 'The drivers for this device are not installed.'
     29 = 'This device is disabled because the firmware of the device did not give it the required resources.'
     30 = 'This device is using an Interrupt Request (IRQ) resource that another device is using.'
     31 = 'This device is not working properly because Windows cannot load the drivers required for this device.'
}

#endregion define hashtable

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "ConfigManagerErrorCode", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$ConfigManagerErrorCode = @{
  Name = 'ConfigManagerErrorCode'
  Expression = {
    # property is an array, so process all values
    $value = $_.ConfigManagerErrorCode
    $ConfigManagerErrorCode_map[[int]$value]
  }  
}
#endregion define calculated property

# retrieve the instances, and output the properties "Caption" and "ConfigManagerErrorCode". The latter
# is defined by the hashtable in $ConfigManagerErrorCode: 
Get-CimInstance -Class Win32_MemoryArray | Select-Object -Property Caption, $ConfigManagerErrorCode

# ...or dump content of property ConfigManagerErrorCode:
$friendlyValues = Get-CimInstance -Class Win32_MemoryArray | 
    Select-Object -Property $ConfigManagerErrorCode |
    Select-Object -ExpandProperty ConfigManagerErrorCode

# output values
$friendlyValues

# output values as comma separated list
$friendlyValues -join ', '

# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $ConfigManagerErrorCode_map to directly translate raw values from an instance
<# 
  this example uses a hashtable to manually translate raw numeric values 
  for property "Win32_MemoryArray" to friendly text. This approach is ideal when
  there is just one instance to work with.

  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Win32_MemoryArray" 
# to translate other properties, use their translation table instead
$ConfigManagerErrorCode_map = @{
      0 = 'This device is working properly.'
      1 = 'This device is not configured correctly.'
      2 = 'Windows cannot load the driver for this device.'
      3 = 'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'
      4 = 'This device is not working properly. One of its drivers or your registry might be corrupted.'
      5 = 'The driver for this device needs a resource that Windows cannot manage.'
      6 = 'The boot configuration for this device conflicts with other devices.'
      7 = 'Cannot filter.'
      8 = 'The driver loader for the device is missing.'
      9 = 'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'
     10 = 'This device cannot start.'
     11 = 'This device failed.'
     12 = 'This device cannot find enough free resources that it can use.'
     13 = 'Windows cannot verify this device''s resources.'
     14 = 'This device cannot work properly until you restart your computer.'
     15 = 'This device is not working properly because there is probably a re-enumeration problem.'
     16 = 'Windows cannot identify all the resources this device uses.'
     17 = 'This device is asking for an unknown resource type.'
     18 = 'Reinstall the drivers for this device.'
     19 = 'Failure using the VxD loader.'
     20 = 'Your registry might be corrupted.'
     21 = 'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'
     22 = 'This device is disabled.'
     23 = 'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'
     24 = 'This device is not present, is not working properly, or does not have all its drivers installed.'
     25 = 'Windows is still setting up this device.'
     26 = 'Windows is still setting up this device.'
     27 = 'This device does not have valid log configuration.'
     28 = 'The drivers for this device are not installed.'
     29 = 'This device is disabled because the firmware of the device did not give it the required resources.'
     30 = 'This device is using an Interrupt Request (IRQ) resource that another device is using.'
     31 = 'This device is not working properly because Windows cannot load the drivers required for this device.'
}

#endregion define hashtable

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to illustrate
  the number-to-text translation. To process all instances, replace
  "Select-Object -First 1" with a "Foreach-Object" loop, and use
  the iterator variable $_ instead of $instance
#>

# query the property
$rawValue = $instance.ConfigManagerErrorCode  

# translate raw value to friendly text:
$friendlyName = $ConfigManagerErrorCode_map[[int]$rawValue]

# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<# 
  this example uses a switch clause to translate raw numeric 
  values for property "ConfigManagerErrorCode" to friendly text. The switch
  clause is embedded into a calculated property so there is
  no need to refer to external variables for translation.

  Note: to use other properties than "ConfigManagerErrorCode", look up the appropriate 
  translation switch clause for the property you would like to use instead.
#>

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "ConfigManagerErrorCode", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$ConfigManagerErrorCode = @{
  Name = 'ConfigManagerErrorCode'
  Expression = {
    # property is an array, so process all values
    $value = $_.ConfigManagerErrorCode
    
    switch([int]$value)
      {
        0          {'This device is working properly.'}
        1          {'This device is not configured correctly.'}
        2          {'Windows cannot load the driver for this device.'}
        3          {'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'}
        4          {'This device is not working properly. One of its drivers or your registry might be corrupted.'}
        5          {'The driver for this device needs a resource that Windows cannot manage.'}
        6          {'The boot configuration for this device conflicts with other devices.'}
        7          {'Cannot filter.'}
        8          {'The driver loader for the device is missing.'}
        9          {'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'}
        10         {'This device cannot start.'}
        11         {'This device failed.'}
        12         {'This device cannot find enough free resources that it can use.'}
        13         {'Windows cannot verify this device''s resources.'}
        14         {'This device cannot work properly until you restart your computer.'}
        15         {'This device is not working properly because there is probably a re-enumeration problem.'}
        16         {'Windows cannot identify all the resources this device uses.'}
        17         {'This device is asking for an unknown resource type.'}
        18         {'Reinstall the drivers for this device.'}
        19         {'Failure using the VxD loader.'}
        20         {'Your registry might be corrupted.'}
        21         {'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'}
        22         {'This device is disabled.'}
        23         {'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'}
        24         {'This device is not present, is not working properly, or does not have all its drivers installed.'}
        25         {'Windows is still setting up this device.'}
        26         {'Windows is still setting up this device.'}
        27         {'This device does not have valid log configuration.'}
        28         {'The drivers for this device are not installed.'}
        29         {'This device is disabled because the firmware of the device did not give it the required resources.'}
        30         {'This device is using an Interrupt Request (IRQ) resource that another device is using.'}
        31         {'This device is not working properly because Windows cannot load the drivers required for this device.'}
        default    {"$value"}
      }
      
  }  
}
#endregion define calculated property

# retrieve all instances...
Get-CimInstance -ClassName Win32_MemoryArray | 
  # ...and output properties "Caption" and "ConfigManagerErrorCode". The latter is defined
  # by the hashtable in $ConfigManagerErrorCode:
  Select-Object -Property Caption, $ConfigManagerErrorCode
Use the Enum from above to auto-translate the code values
<# 
  this example translates raw values by means of type conversion
  the friendly names are defined as enumeration using the
  keyword "enum" (PowerShell 5 or better)
  
  The raw value(s) are translated to friendly text by 
  simply converting them into the enum type.
  
  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  enum definition for the property you would like to use instead.
#>


#region define enum with value-to-text translation:
Enum EnumConfigManagerErrorCode
{
  This_device_is_working_properly                              = 0
  This_device_is_not_configured_correctly                      = 1
  Windows_cannot_load_the_driver_for_this_device               = 2
  The_driver_for_this_device_might_be_corrupted_or_your_system_may_be_running_low_on_memory_or_other_resources = 3
  This_device_is_not_working_properly_One_of_its_drivers_or_your_registry_might_be_corrupted = 4
  The_driver_for_this_device_needs_a_resource_that_Windows_cannot_manage = 5
  The_boot_configuration_for_this_device_conflicts_with_other_devices = 6
  Cannot_filter                                                = 7
  The_driver_loader_for_the_device_is_missing                  = 8
  This_device_is_not_working_properly_because_the_controlling_firmware_is_reporting_the_resources_for_the_device_incorrectly = 9
  This_device_cannot_start                                     = 10
  This_device_failed                                           = 11
  This_device_cannot_find_enough_free_resources_that_it_can_use = 12
  Windows_cannot_verify_this_devices_resources                 = 13
  This_device_cannot_work_properly_until_you_restart_your_computer = 14
  This_device_is_not_working_properly_because_there_is_probably_a_re_enumeration_problem = 15
  Windows_cannot_identify_all_the_resources_this_device_uses   = 16
  This_device_is_asking_for_an_unknown_resource_type           = 17
  Reinstall_the_drivers_for_this_device                        = 18
  Failure_using_the_VxD_loader                                 = 19
  Your_registry_might_be_corrupted                             = 20
  System_failure_Try_changing_the_driver_for_this_device_If_that_does_not_work_see_your_hardware_documentation_Windows_is_removing_this_device = 21
  This_device_is_disabled                                      = 22
  System_failure_Try_changing_the_driver_for_this_device_If_that_doesnt_work_see_your_hardware_documentation = 23
  This_device_is_not_present_is_not_working_properly_or_does_not_have_all_its_drivers_installed = 24
  Windows_is_still_setting_up_this_device1                     = 25
  Windows_is_still_setting_up_this_device2                     = 26
  This_device_does_not_have_valid_log_configuration            = 27
  The_drivers_for_this_device_are_not_installed                = 28
  This_device_is_disabled_because_the_firmware_of_the_device_did_not_give_it_the_required_resources = 29
  This_device_is_using_an_Interrupt_Request_IRQ_resource_that_another_device_is_using = 30
  This_device_is_not_working_properly_because_Windows_cannot_load_the_drivers_required_for_this_device = 31
}

#endregion define enum

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to focus on
  the number-to-text type conversion. 
  
  To process all instances, replace   "Select-Object -First 1" 
  with a "Foreach-Object" loop, and use the iterator variable 
  $_ instead of $instance
#>

# query the property:
$rawValue = $instance.ConfigManagerErrorCode

#region using strict type conversion

<#
  Note: strict type conversion fails if the raw value is 
  not defined by the enum. So if the list of allowable values
  was extended and the enum does not match the value,
  an exception is thrown
#>

# convert the property to the enum **ConfigManagerErrorCode** 
[EnumConfigManagerErrorCode]$rawValue 

# get a comma-separated string:
[EnumConfigManagerErrorCode]$rawValue -join ',' 
#endregion

#region using operator "-as"

<#
  Note: the operator "-as" accepts values not defined
  by the enum and returns $null instead of throwing
  an exception
#>

$rawValue -as [EnumConfigManagerErrorCode]
#endregion

Enums must cover all possible values. If ConfigManagerErrorCode returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.

ConfigManagerUserConfig

BOOLEAN

If True, the device is using a user-defined configuration.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ConfigManagerUserConfig

CorrectableError

BOOLEAN

If True, the most recent error was correctable. This property is not used if ErrorInfo is set to 3.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, CorrectableError

CreationClassName

STRING

Name of the first concrete class that appears in the inheritance chain used in the creation of an instance. When used with the other key properties of the class, the property allows all instances of this class and its subclasses to be identified uniquely.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, CreationClassName

Description

STRING

Description of the object.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, Description

DeviceID

KEY PROPERTY STRING

Unique identifier of the memory array.

Example: “Memory Array 1”

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID

EndingAddress

UINT64

Ending address referenced by an application or operating system. This memory address is mapped by a memory controller for this memory object.

This value comes from the Memory Array Mapped Address structure in the SMBIOS version information. For SMBIOS versions 2.1 thru 2.6 the value comes from the Ending Address member. For SMBIOS version 2.7+ the value comes from the Extended Ending Address member.

For more information about using uint64 values in scripts, see Scripting in WMI.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, EndingAddress

ErrorAccess

UINT16

Type of memory access operation that caused the last error. This property is valid only when ErrorInfo is not set to 3.

ErrorAccess returns a numeric value. To translate it into a meaningful text, use any of the following approaches:

Use a PowerShell Hashtable
$ErrorAccess_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'Read'
      4 = 'Write'
      5 = 'Partial Write'
}
Use a switch statement
switch([int]$value)
{
  1          {'Other'}
  2          {'Unknown'}
  3          {'Read'}
  4          {'Write'}
  5          {'Partial Write'}
  default    {"$value"}
}
Use Enum structure
Enum EnumErrorAccess
{
  Other           = 1
  Unknown         = 2
  Read            = 3
  Write           = 4
  Partial_Write   = 5
}

Examples

Use $ErrorAccess_map in a calculated property for Select-Object
<# 
  this example uses a hashtable to translate raw numeric values for 
  property "ErrorAccess" to friendly text

  Note: to use other properties than "ErrorAccess", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "ErrorAccess" 
# to translate other properties, use their translation table instead
$ErrorAccess_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'Read'
      4 = 'Write'
      5 = 'Partial Write'
}

#endregion define hashtable

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "ErrorAccess", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$ErrorAccess = @{
  Name = 'ErrorAccess'
  Expression = {
    # property is an array, so process all values
    $value = $_.ErrorAccess
    $ErrorAccess_map[[int]$value]
  }  
}
#endregion define calculated property

# retrieve the instances, and output the properties "Caption" and "ErrorAccess". The latter
# is defined by the hashtable in $ErrorAccess: 
Get-CimInstance -Class Win32_MemoryArray | Select-Object -Property Caption, $ErrorAccess

# ...or dump content of property ErrorAccess:
$friendlyValues = Get-CimInstance -Class Win32_MemoryArray | 
    Select-Object -Property $ErrorAccess |
    Select-Object -ExpandProperty ErrorAccess

# output values
$friendlyValues

# output values as comma separated list
$friendlyValues -join ', '

# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $ErrorAccess_map to directly translate raw values from an instance
<# 
  this example uses a hashtable to manually translate raw numeric values 
  for property "Win32_MemoryArray" to friendly text. This approach is ideal when
  there is just one instance to work with.

  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Win32_MemoryArray" 
# to translate other properties, use their translation table instead
$ErrorAccess_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'Read'
      4 = 'Write'
      5 = 'Partial Write'
}

#endregion define hashtable

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to illustrate
  the number-to-text translation. To process all instances, replace
  "Select-Object -First 1" with a "Foreach-Object" loop, and use
  the iterator variable $_ instead of $instance
#>

# query the property
$rawValue = $instance.ErrorAccess  

# translate raw value to friendly text:
$friendlyName = $ErrorAccess_map[[int]$rawValue]

# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<# 
  this example uses a switch clause to translate raw numeric 
  values for property "ErrorAccess" to friendly text. The switch
  clause is embedded into a calculated property so there is
  no need to refer to external variables for translation.

  Note: to use other properties than "ErrorAccess", look up the appropriate 
  translation switch clause for the property you would like to use instead.
#>

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "ErrorAccess", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$ErrorAccess = @{
  Name = 'ErrorAccess'
  Expression = {
    # property is an array, so process all values
    $value = $_.ErrorAccess
    
    switch([int]$value)
      {
        1          {'Other'}
        2          {'Unknown'}
        3          {'Read'}
        4          {'Write'}
        5          {'Partial Write'}
        default    {"$value"}
      }
      
  }  
}
#endregion define calculated property

# retrieve all instances...
Get-CimInstance -ClassName Win32_MemoryArray | 
  # ...and output properties "Caption" and "ErrorAccess". The latter is defined
  # by the hashtable in $ErrorAccess:
  Select-Object -Property Caption, $ErrorAccess
Use the Enum from above to auto-translate the code values
<# 
  this example translates raw values by means of type conversion
  the friendly names are defined as enumeration using the
  keyword "enum" (PowerShell 5 or better)
  
  The raw value(s) are translated to friendly text by 
  simply converting them into the enum type.
  
  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  enum definition for the property you would like to use instead.
#>


#region define enum with value-to-text translation:
Enum EnumErrorAccess
{
  Other           = 1
  Unknown         = 2
  Read            = 3
  Write           = 4
  Partial_Write   = 5
}

#endregion define enum

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to focus on
  the number-to-text type conversion. 
  
  To process all instances, replace   "Select-Object -First 1" 
  with a "Foreach-Object" loop, and use the iterator variable 
  $_ instead of $instance
#>

# query the property:
$rawValue = $instance.ErrorAccess

#region using strict type conversion

<#
  Note: strict type conversion fails if the raw value is 
  not defined by the enum. So if the list of allowable values
  was extended and the enum does not match the value,
  an exception is thrown
#>

# convert the property to the enum **ErrorAccess** 
[EnumErrorAccess]$rawValue 

# get a comma-separated string:
[EnumErrorAccess]$rawValue -join ',' 
#endregion

#region using operator "-as"

<#
  Note: the operator "-as" accepts values not defined
  by the enum and returns $null instead of throwing
  an exception
#>

$rawValue -as [EnumErrorAccess]
#endregion

Enums must cover all possible values. If ErrorAccess returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.

ErrorAddress

UINT64

Address of the last memory error. This property is used only when ErrorInfo is not set to 3.

For more information about using uint64 values in scripts, see Scripting in WMI.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ErrorAddress

ErrorCleared

BOOLEAN

If True, the error reported in LastErrorCode is now cleared.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ErrorCleared

ErrorData

UINT8 ARRAY

Array of data captured from the last memory access with an error. The data occupies the first n octets of the array necessary to hold the number of bits specified by the ErrorTransferSize property. If ErrorTransferSize is 0 (zero), then this property is not used.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ErrorData

ErrorDataOrder

UINT16

Ordering for data stored in the ErrorData property. This property is used only when ErrorTransferSize is 0 (zero).

ErrorDataOrder returns a numeric value. To translate it into a meaningful text, use any of the following approaches:

Use a PowerShell Hashtable
$ErrorDataOrder_map = @{
      0 = 'Unknown'
      1 = 'Least Significant Byte First'
      2 = 'Most Significant Byte First'
}
Use a switch statement
switch([int]$value)
{
  0          {'Unknown'}
  1          {'Least Significant Byte First'}
  2          {'Most Significant Byte First'}
  default    {"$value"}
}
Use Enum structure
Enum EnumErrorDataOrder
{
  Unknown                        = 0
  Least_Significant_Byte_First   = 1
  Most_Significant_Byte_First    = 2
}

Examples

Use $ErrorDataOrder_map in a calculated property for Select-Object
<# 
  this example uses a hashtable to translate raw numeric values for 
  property "ErrorDataOrder" to friendly text

  Note: to use other properties than "ErrorDataOrder", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "ErrorDataOrder" 
# to translate other properties, use their translation table instead
$ErrorDataOrder_map = @{
      0 = 'Unknown'
      1 = 'Least Significant Byte First'
      2 = 'Most Significant Byte First'
}

#endregion define hashtable

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "ErrorDataOrder", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$ErrorDataOrder = @{
  Name = 'ErrorDataOrder'
  Expression = {
    # property is an array, so process all values
    $value = $_.ErrorDataOrder
    $ErrorDataOrder_map[[int]$value]
  }  
}
#endregion define calculated property

# retrieve the instances, and output the properties "Caption" and "ErrorDataOrder". The latter
# is defined by the hashtable in $ErrorDataOrder: 
Get-CimInstance -Class Win32_MemoryArray | Select-Object -Property Caption, $ErrorDataOrder

# ...or dump content of property ErrorDataOrder:
$friendlyValues = Get-CimInstance -Class Win32_MemoryArray | 
    Select-Object -Property $ErrorDataOrder |
    Select-Object -ExpandProperty ErrorDataOrder

# output values
$friendlyValues

# output values as comma separated list
$friendlyValues -join ', '

# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $ErrorDataOrder_map to directly translate raw values from an instance
<# 
  this example uses a hashtable to manually translate raw numeric values 
  for property "Win32_MemoryArray" to friendly text. This approach is ideal when
  there is just one instance to work with.

  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Win32_MemoryArray" 
# to translate other properties, use their translation table instead
$ErrorDataOrder_map = @{
      0 = 'Unknown'
      1 = 'Least Significant Byte First'
      2 = 'Most Significant Byte First'
}

#endregion define hashtable

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to illustrate
  the number-to-text translation. To process all instances, replace
  "Select-Object -First 1" with a "Foreach-Object" loop, and use
  the iterator variable $_ instead of $instance
#>

# query the property
$rawValue = $instance.ErrorDataOrder  

# translate raw value to friendly text:
$friendlyName = $ErrorDataOrder_map[[int]$rawValue]

# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<# 
  this example uses a switch clause to translate raw numeric 
  values for property "ErrorDataOrder" to friendly text. The switch
  clause is embedded into a calculated property so there is
  no need to refer to external variables for translation.

  Note: to use other properties than "ErrorDataOrder", look up the appropriate 
  translation switch clause for the property you would like to use instead.
#>

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "ErrorDataOrder", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$ErrorDataOrder = @{
  Name = 'ErrorDataOrder'
  Expression = {
    # property is an array, so process all values
    $value = $_.ErrorDataOrder
    
    switch([int]$value)
      {
        0          {'Unknown'}
        1          {'Least Significant Byte First'}
        2          {'Most Significant Byte First'}
        default    {"$value"}
      }
      
  }  
}
#endregion define calculated property

# retrieve all instances...
Get-CimInstance -ClassName Win32_MemoryArray | 
  # ...and output properties "Caption" and "ErrorDataOrder". The latter is defined
  # by the hashtable in $ErrorDataOrder:
  Select-Object -Property Caption, $ErrorDataOrder
Use the Enum from above to auto-translate the code values
<# 
  this example translates raw values by means of type conversion
  the friendly names are defined as enumeration using the
  keyword "enum" (PowerShell 5 or better)
  
  The raw value(s) are translated to friendly text by 
  simply converting them into the enum type.
  
  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  enum definition for the property you would like to use instead.
#>


#region define enum with value-to-text translation:
Enum EnumErrorDataOrder
{
  Unknown                        = 0
  Least_Significant_Byte_First   = 1
  Most_Significant_Byte_First    = 2
}

#endregion define enum

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to focus on
  the number-to-text type conversion. 
  
  To process all instances, replace   "Select-Object -First 1" 
  with a "Foreach-Object" loop, and use the iterator variable 
  $_ instead of $instance
#>

# query the property:
$rawValue = $instance.ErrorDataOrder

#region using strict type conversion

<#
  Note: strict type conversion fails if the raw value is 
  not defined by the enum. So if the list of allowable values
  was extended and the enum does not match the value,
  an exception is thrown
#>

# convert the property to the enum **ErrorDataOrder** 
[EnumErrorDataOrder]$rawValue 

# get a comma-separated string:
[EnumErrorDataOrder]$rawValue -join ',' 
#endregion

#region using operator "-as"

<#
  Note: the operator "-as" accepts values not defined
  by the enum and returns $null instead of throwing
  an exception
#>

$rawValue -as [EnumErrorDataOrder]
#endregion

Enums must cover all possible values. If ErrorDataOrder returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.

ErrorDescription

STRING

More information about the error recorded in LastErrorCode, and information about any corrective actions that may be taken.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ErrorDescription

ErrorGranularity

UINT16

Level where the error can be resolved.

1 (Other)

2 (Unknown)

3 (Device level)

4 (Memory partition level)

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ErrorGranularity

ErrorInfo

UINT16

Type of error that occurred most recently. The values 12-14, which indicate whether an error is correctable, are not used with this property, but this information is found in the CorrectableError property.

ErrorInfo returns a numeric value. To translate it into a meaningful text, use any of the following approaches:

Use a PowerShell Hashtable
$ErrorInfo_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'OK'
      4 = 'Bad Read'
      5 = 'Parity Error'
      6 = 'Single-Bit Error'
      7 = 'Double-Bit Error'
      8 = 'Multi-Bit Error'
      9 = 'Nibble Error'
     10 = 'Checksum Error'
     11 = 'CRC Error'
     12 = 'Corrected single-bit error'
     13 = 'Corrected error'
     14 = 'Uncorrectable error'
}
Use a switch statement
switch([int]$value)
{
  1          {'Other'}
  2          {'Unknown'}
  3          {'OK'}
  4          {'Bad Read'}
  5          {'Parity Error'}
  6          {'Single-Bit Error'}
  7          {'Double-Bit Error'}
  8          {'Multi-Bit Error'}
  9          {'Nibble Error'}
  10         {'Checksum Error'}
  11         {'CRC Error'}
  12         {'Corrected single-bit error'}
  13         {'Corrected error'}
  14         {'Uncorrectable error'}
  default    {"$value"}
}
Use Enum structure
Enum EnumErrorInfo
{
  Other                        = 1
  Unknown                      = 2
  OK                           = 3
  Bad_Read                     = 4
  Parity_Error                 = 5
  Single_Bit_Error             = 6
  Double_Bit_Error             = 7
  Multi_Bit_Error              = 8
  Nibble_Error                 = 9
  Checksum_Error               = 10
  CRC_Error                    = 11
  Corrected_single_bit_error   = 12
  Corrected_error              = 13
  Uncorrectable_error          = 14
}

Examples

Use $ErrorInfo_map in a calculated property for Select-Object
<# 
  this example uses a hashtable to translate raw numeric values for 
  property "ErrorInfo" to friendly text

  Note: to use other properties than "ErrorInfo", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "ErrorInfo" 
# to translate other properties, use their translation table instead
$ErrorInfo_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'OK'
      4 = 'Bad Read'
      5 = 'Parity Error'
      6 = 'Single-Bit Error'
      7 = 'Double-Bit Error'
      8 = 'Multi-Bit Error'
      9 = 'Nibble Error'
     10 = 'Checksum Error'
     11 = 'CRC Error'
     12 = 'Corrected single-bit error'
     13 = 'Corrected error'
     14 = 'Uncorrectable error'
}

#endregion define hashtable

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "ErrorInfo", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$ErrorInfo = @{
  Name = 'ErrorInfo'
  Expression = {
    # property is an array, so process all values
    $value = $_.ErrorInfo
    $ErrorInfo_map[[int]$value]
  }  
}
#endregion define calculated property

# retrieve the instances, and output the properties "Caption" and "ErrorInfo". The latter
# is defined by the hashtable in $ErrorInfo: 
Get-CimInstance -Class Win32_MemoryArray | Select-Object -Property Caption, $ErrorInfo

# ...or dump content of property ErrorInfo:
$friendlyValues = Get-CimInstance -Class Win32_MemoryArray | 
    Select-Object -Property $ErrorInfo |
    Select-Object -ExpandProperty ErrorInfo

# output values
$friendlyValues

# output values as comma separated list
$friendlyValues -join ', '

# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $ErrorInfo_map to directly translate raw values from an instance
<# 
  this example uses a hashtable to manually translate raw numeric values 
  for property "Win32_MemoryArray" to friendly text. This approach is ideal when
  there is just one instance to work with.

  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Win32_MemoryArray" 
# to translate other properties, use their translation table instead
$ErrorInfo_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'OK'
      4 = 'Bad Read'
      5 = 'Parity Error'
      6 = 'Single-Bit Error'
      7 = 'Double-Bit Error'
      8 = 'Multi-Bit Error'
      9 = 'Nibble Error'
     10 = 'Checksum Error'
     11 = 'CRC Error'
     12 = 'Corrected single-bit error'
     13 = 'Corrected error'
     14 = 'Uncorrectable error'
}

#endregion define hashtable

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to illustrate
  the number-to-text translation. To process all instances, replace
  "Select-Object -First 1" with a "Foreach-Object" loop, and use
  the iterator variable $_ instead of $instance
#>

# query the property
$rawValue = $instance.ErrorInfo  

# translate raw value to friendly text:
$friendlyName = $ErrorInfo_map[[int]$rawValue]

# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<# 
  this example uses a switch clause to translate raw numeric 
  values for property "ErrorInfo" to friendly text. The switch
  clause is embedded into a calculated property so there is
  no need to refer to external variables for translation.

  Note: to use other properties than "ErrorInfo", look up the appropriate 
  translation switch clause for the property you would like to use instead.
#>

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "ErrorInfo", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$ErrorInfo = @{
  Name = 'ErrorInfo'
  Expression = {
    # property is an array, so process all values
    $value = $_.ErrorInfo
    
    switch([int]$value)
      {
        1          {'Other'}
        2          {'Unknown'}
        3          {'OK'}
        4          {'Bad Read'}
        5          {'Parity Error'}
        6          {'Single-Bit Error'}
        7          {'Double-Bit Error'}
        8          {'Multi-Bit Error'}
        9          {'Nibble Error'}
        10         {'Checksum Error'}
        11         {'CRC Error'}
        12         {'Corrected single-bit error'}
        13         {'Corrected error'}
        14         {'Uncorrectable error'}
        default    {"$value"}
      }
      
  }  
}
#endregion define calculated property

# retrieve all instances...
Get-CimInstance -ClassName Win32_MemoryArray | 
  # ...and output properties "Caption" and "ErrorInfo". The latter is defined
  # by the hashtable in $ErrorInfo:
  Select-Object -Property Caption, $ErrorInfo
Use the Enum from above to auto-translate the code values
<# 
  this example translates raw values by means of type conversion
  the friendly names are defined as enumeration using the
  keyword "enum" (PowerShell 5 or better)
  
  The raw value(s) are translated to friendly text by 
  simply converting them into the enum type.
  
  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  enum definition for the property you would like to use instead.
#>


#region define enum with value-to-text translation:
Enum EnumErrorInfo
{
  Other                        = 1
  Unknown                      = 2
  OK                           = 3
  Bad_Read                     = 4
  Parity_Error                 = 5
  Single_Bit_Error             = 6
  Double_Bit_Error             = 7
  Multi_Bit_Error              = 8
  Nibble_Error                 = 9
  Checksum_Error               = 10
  CRC_Error                    = 11
  Corrected_single_bit_error   = 12
  Corrected_error              = 13
  Uncorrectable_error          = 14
}

#endregion define enum

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to focus on
  the number-to-text type conversion. 
  
  To process all instances, replace   "Select-Object -First 1" 
  with a "Foreach-Object" loop, and use the iterator variable 
  $_ instead of $instance
#>

# query the property:
$rawValue = $instance.ErrorInfo

#region using strict type conversion

<#
  Note: strict type conversion fails if the raw value is 
  not defined by the enum. So if the list of allowable values
  was extended and the enum does not match the value,
  an exception is thrown
#>

# convert the property to the enum **ErrorInfo** 
[EnumErrorInfo]$rawValue 

# get a comma-separated string:
[EnumErrorInfo]$rawValue -join ',' 
#endregion

#region using operator "-as"

<#
  Note: the operator "-as" accepts values not defined
  by the enum and returns $null instead of throwing
  an exception
#>

$rawValue -as [EnumErrorInfo]
#endregion

Enums must cover all possible values. If ErrorInfo returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.

ErrorMethodology

STRING

Types of error checking used by the memory hardware.

Other (“Other”)

Unknown (“Unknown”)

None (“None”)

Parity (“Parity”)

Single-bit ECC (“Single-bit ECC”)

Multi-bit ECC (“Multi-bit ECC”)

CRC (“CRC”)

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ErrorMethodology

ErrorResolution

UINT64 “BYTES”

Amount of data actually determined to cause the error. This property is unused when the ErrorInfo property is set to 3.

For more information about using uint64 values in scripts, see Scripting in WMI.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ErrorResolution

ErrorTime

DATETIME

Time that the last memory error occurred. This property is valid only when ErrorInfo is not set to 3.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ErrorTime

ErrorTransferSize

UINT32 “BITS”

Size of the data (containing the last error) being transferred. This property is set to 0 (zero) if there is no error.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, ErrorTransferSize

InstallDate

DATETIME

Date and time the object was installed. This property does not need a value to indicate that the object is installed.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, InstallDate

LastErrorCode

UINT32

Last error code reported by the logical device.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, LastErrorCode

Name

STRING

Label by which the object is known. When subclassed, the property can be overridden to be a key property.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, Name

NumberOfBlocks

UINT64

Total number of consecutive blocks, each block the size of the value contained in the BlockSize property, which form this storage extent. Total size of the storage extent can be calculated by multiplying the value of the BlockSize property by the value of this property. If the value of BlockSize is 1, this property is the total size of the storage extent.

For more information about using uint64 values in scripts, see Scripting in WMI.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, NumberOfBlocks

OtherErrorDescription

STRING

More information when the ErrorInfo property is set to 1.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, OtherErrorDescription

PNPDeviceID

STRING

Windows Plug and Play device identifier of the logical device.

Example: “*PNP030b”

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, PNPDeviceID

PowerManagementCapabilities

UINT16 ARRAY

Array of the specific power-related capabilities of a logical device.

PowerManagementCapabilities returns a numeric value. To translate it into a meaningful text, use any of the following approaches:

Use a PowerShell Hashtable
$PowerManagementCapabilities_map = @{
      0 = 'Unknown'
      1 = 'Not Supported'
      2 = 'Disabled'
      3 = 'Enabled'
      4 = 'Power Saving Modes Entered Automatically'
      5 = 'Power State Settable'
      6 = 'Power Cycling Supported'
      7 = 'Timed Power On Supported'
}
Use a switch statement
switch([int]$value)
{
  0          {'Unknown'}
  1          {'Not Supported'}
  2          {'Disabled'}
  3          {'Enabled'}
  4          {'Power Saving Modes Entered Automatically'}
  5          {'Power State Settable'}
  6          {'Power Cycling Supported'}
  7          {'Timed Power On Supported'}
  default    {"$value"}
}
Use Enum structure
Enum EnumPowerManagementCapabilities
{
  Unknown                                    = 0
  Not_Supported                              = 1
  Disabled                                   = 2
  Enabled                                    = 3
  Power_Saving_Modes_Entered_Automatically   = 4
  Power_State_Settable                       = 5
  Power_Cycling_Supported                    = 6
  Timed_Power_On_Supported                   = 7
}

Examples

Use $PowerManagementCapabilities_map in a calculated property for Select-Object
<# 
  this example uses a hashtable to translate raw numeric values for 
  property "PowerManagementCapabilities" to friendly text

  Note: to use other properties than "PowerManagementCapabilities", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "PowerManagementCapabilities" 
# to translate other properties, use their translation table instead
$PowerManagementCapabilities_map = @{
      0 = 'Unknown'
      1 = 'Not Supported'
      2 = 'Disabled'
      3 = 'Enabled'
      4 = 'Power Saving Modes Entered Automatically'
      5 = 'Power State Settable'
      6 = 'Power Cycling Supported'
      7 = 'Timed Power On Supported'
}

#endregion define hashtable

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "PowerManagementCapabilities", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$PowerManagementCapabilities = @{
  Name = 'PowerManagementCapabilities'
  Expression = {
    # property is an array, so process all values
    $result = foreach($value in $_.PowerManagementCapabilities)
    {
        # important: convert original value to [int] because
        # hashtable keys are type-aware:
        $PowerManagementCapabilities_map[[int]$value]
    }
    # uncomment to get a comma-separated string instead
    # of a string array:
    $result <#-join ', '#>
  }  
}
#endregion define calculated property

# retrieve the instances, and output the properties "Caption" and "PowerManagementCapabilities". The latter
# is defined by the hashtable in $PowerManagementCapabilities: 
Get-CimInstance -Class Win32_MemoryArray | Select-Object -Property Caption, $PowerManagementCapabilities

# ...or dump content of property PowerManagementCapabilities:
$friendlyValues = Get-CimInstance -Class Win32_MemoryArray | 
    Select-Object -Property $PowerManagementCapabilities |
    Select-Object -ExpandProperty PowerManagementCapabilities

# output values
$friendlyValues

# output values as comma separated list
$friendlyValues -join ', '

# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $PowerManagementCapabilities_map to directly translate raw values from an instance
<# 
  this example uses a hashtable to manually translate raw numeric values 
  for property "Win32_MemoryArray" to friendly text. This approach is ideal when there
  is just one instance to work with.

  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Win32_MemoryArray" 
# to translate other properties, use their translation table instead
$PowerManagementCapabilities_map = @{
      0 = 'Unknown'
      1 = 'Not Supported'
      2 = 'Disabled'
      3 = 'Enabled'
      4 = 'Power Saving Modes Entered Automatically'
      5 = 'Power State Settable'
      6 = 'Power Cycling Supported'
      7 = 'Timed Power On Supported'
}

#endregion define hashtable

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to illustrate
  the number-to-text translation. To process all instances, replace
  "Select-Object -First 1" with a "Foreach-Object" loop, and use
  the iterator variable $_ instead of $instance
#>

# query the property (hint: the property is an array!)
$rawValues = $instance.PowerManagementCapabilities  

# translate all raw values into friendly names:
$friendlyNames = foreach($rawValue in $rawValues)
{ $PowerManagementCapabilities_map[[int]$rawValue] }

# output values
$friendlyValues

# output values as comma separated list
$friendlyValues -join ', '

# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use a switch statement inside a calculated property for Select-Object
<# 
  this example uses a switch clause to translate raw numeric 
  values for property "PowerManagementCapabilities" to friendly text. The switch
  clause is embedded into a calculated property so there is
  no need to refer to external variables for translation.

  Note: to use other properties than "PowerManagementCapabilities", look up the appropriate 
  translation switch clause for the property you would like to use instead.
#>

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "PowerManagementCapabilities", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$PowerManagementCapabilities = @{
  Name = 'PowerManagementCapabilities'
  Expression = {
    # property is an array, so process all values
    $result = foreach($value in $_.PowerManagementCapabilities)
    {
        switch([int]$value)
      {
        0          {'Unknown'}
        1          {'Not Supported'}
        2          {'Disabled'}
        3          {'Enabled'}
        4          {'Power Saving Modes Entered Automatically'}
        5          {'Power State Settable'}
        6          {'Power Cycling Supported'}
        7          {'Timed Power On Supported'}
        default    {"$value"}
      }
      
    }
    $result
  }  
}
#endregion define calculated property

# retrieve all instances...
Get-CimInstance -ClassName Win32_MemoryArray | 
  # ...and output properties "Caption" and "PowerManagementCapabilities". The latter is defined
  # by the hashtable in $PowerManagementCapabilities:
  Select-Object -Property Caption, $PowerManagementCapabilities
Use the Enum from above to auto-translate the code values
<# 
  this example translates raw values by means of type conversion
  the friendly names are defined as enumeration using the
  keyword "enum" (PowerShell 5 or better)
  
  The raw value(s) are translated to friendly text by 
  simply converting them into the enum type.
  
  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  enum definition for the property you would like to use instead.
#>


#region define enum with value-to-text translation:
Enum EnumPowerManagementCapabilities
{
  Unknown                                    = 0
  Not_Supported                              = 1
  Disabled                                   = 2
  Enabled                                    = 3
  Power_Saving_Modes_Entered_Automatically   = 4
  Power_State_Settable                       = 5
  Power_Cycling_Supported                    = 6
  Timed_Power_On_Supported                   = 7
}

#endregion define enum

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to focus on
  the number-to-text type conversion. 
  
  To process all instances, replace   "Select-Object -First 1" 
  with a "Foreach-Object" loop, and use the iterator variable 
  $_ instead of $instance
#>

# query the property:
$rawValue = $instance.PowerManagementCapabilities

#region using strict type conversion

<#
  Note: strict type conversion fails if the raw value is 
  not defined by the enum. So if the list of allowable values
  was extended and the enum does not match the value,
  an exception is thrown
#>

# convert the property to the enum **PowerManagementCapabilities** 
[EnumPowerManagementCapabilities[]]$rawValue 

# get a comma-separated string:
[EnumPowerManagementCapabilities[]]$rawValue -join ',' 
#endregion

#region using operator "-as"

<#
  Note: the operator "-as" accepts values not defined
  by the enum and returns $null instead of throwing
  an exception
#>

$rawValue -as [EnumPowerManagementCapabilities[]]
#endregion

Enums must cover all possible values. If PowerManagementCapabilities returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.

PowerManagementSupported

BOOLEAN

If True, the device can be power-managed (can be put into suspend mode, and so on). The property does not indicate that power management features are currently enabled, only that the logical device is capable of power management.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, PowerManagementSupported

Purpose

STRING

Free-form string describing the media and its use.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, Purpose

StartingAddress

UINT64

Beginning address referenced by an application or the operating system. This memory address is mapped by a memory controller for this memory object.

This value comes from the Memory Array Mapped Address structure in the SMBIOS version information. For SMBIOS versions 2.1 thru 2.6 the value comes from the Starting Address member. For SMBIOS version 2.7+ the value comes from the Extended Starting Address member.

For more information about using uint64 values in scripts, see Scripting in WMI.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, StartingAddress

Status

STRING MAX 10 CHAR

Current status of an object. Various operational and nonoperational statuses can be defined. Available values:

$values = 'Degraded','Error','Lost Comm','No Contact','NonRecover','OK','Pred Fail','Service','Starting','Stopping','Stressed','Unknown'
Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, Status

StatusInfo

UINT16

State of the logical device. If this property does not apply to the logical device, the value 5 (Not Applicable) should be used.

StatusInfo returns a numeric value. To translate it into a meaningful text, use any of the following approaches:

Use a PowerShell Hashtable
$StatusInfo_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'Enabled'
      4 = 'Disabled'
      5 = 'Not Applicable'
}
Use a switch statement
switch([int]$value)
{
  1          {'Other'}
  2          {'Unknown'}
  3          {'Enabled'}
  4          {'Disabled'}
  5          {'Not Applicable'}
  default    {"$value"}
}
Use Enum structure
Enum EnumStatusInfo
{
  Other            = 1
  Unknown          = 2
  Enabled          = 3
  Disabled         = 4
  Not_Applicable   = 5
}

Examples

Use $StatusInfo_map in a calculated property for Select-Object
<# 
  this example uses a hashtable to translate raw numeric values for 
  property "StatusInfo" to friendly text

  Note: to use other properties than "StatusInfo", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "StatusInfo" 
# to translate other properties, use their translation table instead
$StatusInfo_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'Enabled'
      4 = 'Disabled'
      5 = 'Not Applicable'
}

#endregion define hashtable

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "StatusInfo", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$StatusInfo = @{
  Name = 'StatusInfo'
  Expression = {
    # property is an array, so process all values
    $value = $_.StatusInfo
    $StatusInfo_map[[int]$value]
  }  
}
#endregion define calculated property

# retrieve the instances, and output the properties "Caption" and "StatusInfo". The latter
# is defined by the hashtable in $StatusInfo: 
Get-CimInstance -Class Win32_MemoryArray | Select-Object -Property Caption, $StatusInfo

# ...or dump content of property StatusInfo:
$friendlyValues = Get-CimInstance -Class Win32_MemoryArray | 
    Select-Object -Property $StatusInfo |
    Select-Object -ExpandProperty StatusInfo

# output values
$friendlyValues

# output values as comma separated list
$friendlyValues -join ', '

# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $StatusInfo_map to directly translate raw values from an instance
<# 
  this example uses a hashtable to manually translate raw numeric values 
  for property "Win32_MemoryArray" to friendly text. This approach is ideal when
  there is just one instance to work with.

  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  translation hashtable for the property you would like to use instead.
#>

#region define hashtable to translate raw values to friendly text

# Please note: this hashtable is specific for property "Win32_MemoryArray" 
# to translate other properties, use their translation table instead
$StatusInfo_map = @{
      1 = 'Other'
      2 = 'Unknown'
      3 = 'Enabled'
      4 = 'Disabled'
      5 = 'Not Applicable'
}

#endregion define hashtable

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to illustrate
  the number-to-text translation. To process all instances, replace
  "Select-Object -First 1" with a "Foreach-Object" loop, and use
  the iterator variable $_ instead of $instance
#>

# query the property
$rawValue = $instance.StatusInfo  

# translate raw value to friendly text:
$friendlyName = $StatusInfo_map[[int]$rawValue]

# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<# 
  this example uses a switch clause to translate raw numeric 
  values for property "StatusInfo" to friendly text. The switch
  clause is embedded into a calculated property so there is
  no need to refer to external variables for translation.

  Note: to use other properties than "StatusInfo", look up the appropriate 
  translation switch clause for the property you would like to use instead.
#>

#region define calculated property (to be used with Select-Object)

<#
  a calculated property is defined by a hashtable with keys "Name" and "Expression"
  "Name" defines the name of the property (in this example, it is "StatusInfo", but you can rename it to anything else)
  "Expression" defines a scriptblock that calculates the content of this property
  in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
  value to its friendly text counterpart:
#>
 
$StatusInfo = @{
  Name = 'StatusInfo'
  Expression = {
    # property is an array, so process all values
    $value = $_.StatusInfo
    
    switch([int]$value)
      {
        1          {'Other'}
        2          {'Unknown'}
        3          {'Enabled'}
        4          {'Disabled'}
        5          {'Not Applicable'}
        default    {"$value"}
      }
      
  }  
}
#endregion define calculated property

# retrieve all instances...
Get-CimInstance -ClassName Win32_MemoryArray | 
  # ...and output properties "Caption" and "StatusInfo". The latter is defined
  # by the hashtable in $StatusInfo:
  Select-Object -Property Caption, $StatusInfo
Use the Enum from above to auto-translate the code values
<# 
  this example translates raw values by means of type conversion
  the friendly names are defined as enumeration using the
  keyword "enum" (PowerShell 5 or better)
  
  The raw value(s) are translated to friendly text by 
  simply converting them into the enum type.
  
  Note: to use other properties than "Win32_MemoryArray", look up the appropriate 
  enum definition for the property you would like to use instead.
#>


#region define enum with value-to-text translation:
Enum EnumStatusInfo
{
  Other            = 1
  Unknown          = 2
  Enabled          = 3
  Disabled         = 4
  Not_Applicable   = 5
}

#endregion define enum

# get one instance:
$instance = Get-CimInstance -Class Win32_MemoryArray | Select-Object -First 1

<#
  IMPORTANT: this example processes only one instance to focus on
  the number-to-text type conversion. 
  
  To process all instances, replace   "Select-Object -First 1" 
  with a "Foreach-Object" loop, and use the iterator variable 
  $_ instead of $instance
#>

# query the property:
$rawValue = $instance.StatusInfo

#region using strict type conversion

<#
  Note: strict type conversion fails if the raw value is 
  not defined by the enum. So if the list of allowable values
  was extended and the enum does not match the value,
  an exception is thrown
#>

# convert the property to the enum **StatusInfo** 
[EnumStatusInfo]$rawValue 

# get a comma-separated string:
[EnumStatusInfo]$rawValue -join ',' 
#endregion

#region using operator "-as"

<#
  Note: the operator "-as" accepts values not defined
  by the enum and returns $null instead of throwing
  an exception
#>

$rawValue -as [EnumStatusInfo]
#endregion

Enums must cover all possible values. If StatusInfo returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.

SystemCreationClassName

STRING

Value of the scoping computer’s CreationClassName property.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, SystemCreationClassName

SystemLevelAddress

BOOLEAN

If True, the address information in the ErrorAddress property is a system-level address. If False, it is a physical address. This property is used only when ErrorInfo is not set to 3.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, SystemLevelAddress

SystemName

STRING

Name of the scoping system.

Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property DeviceID, SystemName

Examples

List all instances of Win32_MemoryArray
Get-CimInstance -ClassName Win32_MemoryArray

Learn more about Get-CimInstance and the deprecated Get-WmiObject.

View all properties
Get-CimInstance -ClassName Win32_MemoryArray -Property *
View key properties only
Get-CimInstance -ClassName Win32_MemoryArray -KeyOnly

Selecting Properties

To select only some properties, pipe the results to Select-Object -Property a,b,c with a comma-separated list of the properties you require. Wildcards are permitted.

Get-CimInstance always returns all properties but only retrieves the ones that you specify. All other properties are empty but still present. That’s why you need to pipe the results into Select-Object if you want to limit the visible properties, i.e. for reporting.

Selecting Properties

The code below lists all available properties. Remove the ones you do not need:

$properties = 'Access',
              'AdditionalErrorData',
              'Availability',
              'BlockSize',
              'Caption',
              'ConfigManagerErrorCode',
              'ConfigManagerUserConfig',
              'CorrectableError',
              'CreationClassName',
              'Description',
              'DeviceID',
              'EndingAddress',
              'ErrorAccess',
              'ErrorAddress',
              'ErrorCleared',
              'ErrorData',
              'ErrorDataOrder',
              'ErrorDescription',
              'ErrorGranularity',
              'ErrorInfo',
              'ErrorMethodology',
              'ErrorResolution',
              'ErrorTime',
              'ErrorTransferSize',
              'InstallDate',
              'LastErrorCode',
              'Name',
              'NumberOfBlocks',
              'OtherErrorDescription',
              'PNPDeviceID',
              'PowerManagementCapabilities',
              'PowerManagementSupported',
              'Purpose',
              'StartingAddress',
              'Status',
              'StatusInfo',
              'SystemCreationClassName',
              'SystemLevelAddress',
              'SystemName'
Get-CimInstance -ClassName Win32_MemoryArray | Select-Object -Property $properties
Limiting Network Bandwidth

If you work remotely, it makes sense to limit network bandwidth by filtering the properties on the server side, too:

Get-CimInstance -Class Win32_MemoryArray -Property $property | 
Select-Object -Property $property

Selecting Instances

To select some instances, use Get-CimInstance and a WMI Query. The wildcard character in WMI Queries is % (and not “*”).

The parameter -Filter runs a simple query.

Listing all instances where the property Caption starts with “A”
Get-CimInstance -Class Win32_MemoryArray -Filter 'Caption LIKE "a%"' 
Using a WQL Query

The parameter -Query uses a query similar to SQL and combines the parameters -Filter and -Property. This returns all instances where the property Caption starts with “A”, and returns the properties specified:

Get-CimInstance -Query "SELECT PowerManagementCapabilities, ErrorMethodology, ErrorCleared, Description FROM Win32_MemoryArray WHERE Caption LIKE 'a%'"

Any property you did not specify is still present but empty. You might need to use Select-Object to remove all unwanted properties:

Get-CimInstance -Query "SELECT PowerManagementCapabilities, ErrorMethodology, ErrorCleared, Description FROM Win32_MemoryArray WHERE Caption LIKE 'a%'" | Select-Object -Property PowerManagementCapabilities, ErrorMethodology, ErrorCleared, Description

Accessing Remote Computers

To access remote systems, you need to have proper permissions. User the parameter -ComputerName to access one or more remote systems.

Authenticating as Current User
# one or more computer names or IP addresses:
$list = 'server1', 'server2'

# authenticate with your current identity:
$result = Get-CimInstance -ClassName Win32_MemoryArray -ComputerName $list 
$result
Authenticating as Different User

Use a CIMSession object to authenticate with a new identity:

# one or more computer names or IP addresses:
$list = 'server1', 'server2'

# authenticate with a different identity:
$cred = Get-Credential -Message 'Authenticate to retrieve WMI information:'
$session = New-CimSession -ComputerName $list -Credential $cred

$result = Get-CimInstance Win32_MemoryArray -CimSession $session

# remove the session after use (if you do not plan to re-use it later)
Remove-CimSession -CimSession $session

$result

Learn more about accessing remote computers.

Requirements

To use Win32_MemoryArray, the following requirements apply:

PowerShell

Get-CimInstance was introduced with PowerShell Version 3.0, which in turn was introduced on clients with Windows 8 and on servers with Windows Server 2012.

If necessary, update Windows PowerShell to Windows PowerShell 5.1, or install PowerShell 7 side-by-side.

Operating System

Win32_MemoryArray was introduced on clients with Windows Vista and on servers with Windows Server 2008.

Namespace

Win32_MemoryArray lives in the Namespace Root/CIMV2. This is the default namespace. There is no need to use the -Namespace parameter in Get-CimInstance.

Implementation

Win32_MemoryArray is implemented in CIMWin32.dll and defined in CIMWin32.mof. Both files are located in the folder C:\Windows\system32\wbem:

explorer $env:windir\system32\wbem
notepad $env:windir\system32\wbem\CIMWin32.mof