The Win32_PointingDevice WMI class represents an input device used to point to and select regions on the display of a computer system running Windows. Any device used to manipulate a pointer, or point to the display on a computer system running Windows is a member of this class.
Methods
Win32_PointingDevice has no methods. Inherited methods (Reset and SetPowerState) are not implemented.
Properties
Win32_PointingDevice returns 33 properties:
'Availability','Caption','ConfigManagerErrorCode','ConfigManagerUserConfig',
'CreationClassName','Description','DeviceID','DeviceInterface','DoubleSpeedThreshold','ErrorCleared',
'ErrorDescription','Handedness','HardwareType','InfFileName','InfSection','InstallDate','IsLocked',
'LastErrorCode','Manufacturer','Name','NumberOfButtons','PNPDeviceID','PointingType',
'PowerManagementCapabilities','PowerManagementSupported','QuadSpeedThreshold','Resolution','SampleRate','Status',
'StatusInfo','Synch','SystemCreationClassName','SystemName'
Unless explicitly marked as writeable, all properties are read-only. Read all properties for all instances:
Get-CimInstance -ClassName Win32_PointingDevice -Property *
Most WMI classes return one or more instances.
When
Get-CimInstance
returns no result, then apparently no instances of class Win32_PointingDevice exist. This is normal behavior.Either the class is not implemented on your system (may be deprecated or due to missing drivers, i.e. CIM_VideoControllerResolution), or there are simply no physical representations of this class currently available (i.e. Win32_TapeDrive).
Availability
Availability and status of the device.
Availability returns a numeric value. To translate it into a meaningful text, use any of the following approaches:
Use a PowerShell Hashtable
$Availability_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Running/Full Power'
4 = 'Warning'
5 = 'In Test'
6 = 'Not Applicable'
7 = 'Power Off'
8 = 'Off Line'
9 = 'Off Duty'
10 = 'Degraded'
11 = 'Not Installed'
12 = 'Install Error'
13 = 'Power Save - Unknown'
14 = 'Power Save - Low Power Mode'
15 = 'Power Save - Standby'
16 = 'Power Cycle'
17 = 'Power Save - Warning'
18 = 'Paused'
19 = 'Not Ready'
20 = 'Not Configured'
21 = 'Quiesced'
}
Use a switch statement
switch([int]$value)
{
1 {'Other'}
2 {'Unknown'}
3 {'Running/Full Power'}
4 {'Warning'}
5 {'In Test'}
6 {'Not Applicable'}
7 {'Power Off'}
8 {'Off Line'}
9 {'Off Duty'}
10 {'Degraded'}
11 {'Not Installed'}
12 {'Install Error'}
13 {'Power Save - Unknown'}
14 {'Power Save - Low Power Mode'}
15 {'Power Save - Standby'}
16 {'Power Cycle'}
17 {'Power Save - Warning'}
18 {'Paused'}
19 {'Not Ready'}
20 {'Not Configured'}
21 {'Quiesced'}
default {"$value"}
}
Use Enum structure
Enum EnumAvailability
{
Other = 1
Unknown = 2
RunningFull_Power = 3
Warning = 4
In_Test = 5
Not_Applicable = 6
Power_Off = 7
Off_Line = 8
Off_Duty = 9
Degraded = 10
Not_Installed = 11
Install_Error = 12
Power_Save_Unknown = 13
Power_Save_Low_Power_Mode = 14
Power_Save_Standby = 15
Power_Cycle = 16
Power_Save_Warning = 17
Paused = 18
Not_Ready = 19
Not_Configured = 20
Quiesced = 21
}
Examples
Use $Availability_map in a calculated property for Select-Object
<#
this example uses a hashtable to translate raw numeric values for
property "Availability" to friendly text
Note: to use other properties than "Availability", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "Availability"
# to translate other properties, use their translation table instead
$Availability_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Running/Full Power'
4 = 'Warning'
5 = 'In Test'
6 = 'Not Applicable'
7 = 'Power Off'
8 = 'Off Line'
9 = 'Off Duty'
10 = 'Degraded'
11 = 'Not Installed'
12 = 'Install Error'
13 = 'Power Save - Unknown'
14 = 'Power Save - Low Power Mode'
15 = 'Power Save - Standby'
16 = 'Power Cycle'
17 = 'Power Save - Warning'
18 = 'Paused'
19 = 'Not Ready'
20 = 'Not Configured'
21 = 'Quiesced'
}
#endregion define hashtable
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "Availability", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$Availability = @{
Name = 'Availability'
Expression = {
# property is an array, so process all values
$value = $_.Availability
$Availability_map[[int]$value]
}
}
#endregion define calculated property
# retrieve the instances, and output the properties "Caption" and "Availability". The latter
# is defined by the hashtable in $Availability:
Get-CimInstance -Class Win32_PointingDevice | Select-Object -Property Caption, $Availability
# ...or dump content of property Availability:
$friendlyValues = Get-CimInstance -Class Win32_PointingDevice |
Select-Object -Property $Availability |
Select-Object -ExpandProperty Availability
# output values
$friendlyValues
# output values as comma separated list
$friendlyValues -join ', '
# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $Availability_map to directly translate raw values from an instance
<#
this example uses a hashtable to manually translate raw numeric values
for property "Win32_PointingDevice" to friendly text. This approach is ideal when
there is just one instance to work with.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "Win32_PointingDevice"
# to translate other properties, use their translation table instead
$Availability_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Running/Full Power'
4 = 'Warning'
5 = 'In Test'
6 = 'Not Applicable'
7 = 'Power Off'
8 = 'Off Line'
9 = 'Off Duty'
10 = 'Degraded'
11 = 'Not Installed'
12 = 'Install Error'
13 = 'Power Save - Unknown'
14 = 'Power Save - Low Power Mode'
15 = 'Power Save - Standby'
16 = 'Power Cycle'
17 = 'Power Save - Warning'
18 = 'Paused'
19 = 'Not Ready'
20 = 'Not Configured'
21 = 'Quiesced'
}
#endregion define hashtable
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to illustrate
the number-to-text translation. To process all instances, replace
"Select-Object -First 1" with a "Foreach-Object" loop, and use
the iterator variable $_ instead of $instance
#>
# query the property
$rawValue = $instance.Availability
# translate raw value to friendly text:
$friendlyName = $Availability_map[[int]$rawValue]
# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<#
this example uses a switch clause to translate raw numeric
values for property "Availability" to friendly text. The switch
clause is embedded into a calculated property so there is
no need to refer to external variables for translation.
Note: to use other properties than "Availability", look up the appropriate
translation switch clause for the property you would like to use instead.
#>
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "Availability", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$Availability = @{
Name = 'Availability'
Expression = {
# property is an array, so process all values
$value = $_.Availability
switch([int]$value)
{
1 {'Other'}
2 {'Unknown'}
3 {'Running/Full Power'}
4 {'Warning'}
5 {'In Test'}
6 {'Not Applicable'}
7 {'Power Off'}
8 {'Off Line'}
9 {'Off Duty'}
10 {'Degraded'}
11 {'Not Installed'}
12 {'Install Error'}
13 {'Power Save - Unknown'}
14 {'Power Save - Low Power Mode'}
15 {'Power Save - Standby'}
16 {'Power Cycle'}
17 {'Power Save - Warning'}
18 {'Paused'}
19 {'Not Ready'}
20 {'Not Configured'}
21 {'Quiesced'}
default {"$value"}
}
}
}
#endregion define calculated property
# retrieve all instances...
Get-CimInstance -ClassName Win32_PointingDevice |
# ...and output properties "Caption" and "Availability". The latter is defined
# by the hashtable in $Availability:
Select-Object -Property Caption, $Availability
Use the Enum from above to auto-translate the code values
<#
this example translates raw values by means of type conversion
the friendly names are defined as enumeration using the
keyword "enum" (PowerShell 5 or better)
The raw value(s) are translated to friendly text by
simply converting them into the enum type.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
enum definition for the property you would like to use instead.
#>
#region define enum with value-to-text translation:
Enum EnumAvailability
{
Other = 1
Unknown = 2
RunningFull_Power = 3
Warning = 4
In_Test = 5
Not_Applicable = 6
Power_Off = 7
Off_Line = 8
Off_Duty = 9
Degraded = 10
Not_Installed = 11
Install_Error = 12
Power_Save_Unknown = 13
Power_Save_Low_Power_Mode = 14
Power_Save_Standby = 15
Power_Cycle = 16
Power_Save_Warning = 17
Paused = 18
Not_Ready = 19
Not_Configured = 20
Quiesced = 21
}
#endregion define enum
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to focus on
the number-to-text type conversion.
To process all instances, replace "Select-Object -First 1"
with a "Foreach-Object" loop, and use the iterator variable
$_ instead of $instance
#>
# query the property:
$rawValue = $instance.Availability
#region using strict type conversion
<#
Note: strict type conversion fails if the raw value is
not defined by the enum. So if the list of allowable values
was extended and the enum does not match the value,
an exception is thrown
#>
# convert the property to the enum **Availability**
[EnumAvailability]$rawValue
# get a comma-separated string:
[EnumAvailability]$rawValue -join ','
#endregion
#region using operator "-as"
<#
Note: the operator "-as" accepts values not defined
by the enum and returns $null instead of throwing
an exception
#>
$rawValue -as [EnumAvailability]
#endregion
Enums must cover all possible values. If Availability returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.
Caption
Short description of the object.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, Caption
ConfigManagerErrorCode
Win32 Configuration Manager error code.
ConfigManagerErrorCode returns a numeric value. To translate it into a meaningful text, use any of the following approaches:
Use a PowerShell Hashtable
$ConfigManagerErrorCode_map = @{
0 = 'This device is working properly.'
1 = 'This device is not configured correctly.'
2 = 'Windows cannot load the driver for this device.'
3 = 'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'
4 = 'This device is not working properly. One of its drivers or your registry might be corrupted.'
5 = 'The driver for this device needs a resource that Windows cannot manage.'
6 = 'The boot configuration for this device conflicts with other devices.'
7 = 'Cannot filter.'
8 = 'The driver loader for the device is missing.'
9 = 'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'
10 = 'This device cannot start.'
11 = 'This device failed.'
12 = 'This device cannot find enough free resources that it can use.'
13 = 'Windows cannot verify this device''s resources.'
14 = 'This device cannot work properly until you restart your computer.'
15 = 'This device is not working properly because there is probably a re-enumeration problem.'
16 = 'Windows cannot identify all the resources this device uses.'
17 = 'This device is asking for an unknown resource type.'
18 = 'Reinstall the drivers for this device.'
19 = 'Failure using the VxD loader.'
20 = 'Your registry might be corrupted.'
21 = 'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'
22 = 'This device is disabled.'
23 = 'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'
24 = 'This device is not present, is not working properly, or does not have all its drivers installed.'
25 = 'Windows is still setting up this device.'
26 = 'Windows is still setting up this device.'
27 = 'This device does not have valid log configuration.'
28 = 'The drivers for this device are not installed.'
29 = 'This device is disabled because the firmware of the device did not give it the required resources.'
30 = 'This device is using an Interrupt Request (IRQ) resource that another device is using.'
31 = 'This device is not working properly because Windows cannot load the drivers required for this device.'
}
Use a switch statement
switch([int]$value)
{
0 {'This device is working properly.'}
1 {'This device is not configured correctly.'}
2 {'Windows cannot load the driver for this device.'}
3 {'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'}
4 {'This device is not working properly. One of its drivers or your registry might be corrupted.'}
5 {'The driver for this device needs a resource that Windows cannot manage.'}
6 {'The boot configuration for this device conflicts with other devices.'}
7 {'Cannot filter.'}
8 {'The driver loader for the device is missing.'}
9 {'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'}
10 {'This device cannot start.'}
11 {'This device failed.'}
12 {'This device cannot find enough free resources that it can use.'}
13 {'Windows cannot verify this device''s resources.'}
14 {'This device cannot work properly until you restart your computer.'}
15 {'This device is not working properly because there is probably a re-enumeration problem.'}
16 {'Windows cannot identify all the resources this device uses.'}
17 {'This device is asking for an unknown resource type.'}
18 {'Reinstall the drivers for this device.'}
19 {'Failure using the VxD loader.'}
20 {'Your registry might be corrupted.'}
21 {'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'}
22 {'This device is disabled.'}
23 {'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'}
24 {'This device is not present, is not working properly, or does not have all its drivers installed.'}
25 {'Windows is still setting up this device.'}
26 {'Windows is still setting up this device.'}
27 {'This device does not have valid log configuration.'}
28 {'The drivers for this device are not installed.'}
29 {'This device is disabled because the firmware of the device did not give it the required resources.'}
30 {'This device is using an Interrupt Request (IRQ) resource that another device is using.'}
31 {'This device is not working properly because Windows cannot load the drivers required for this device.'}
default {"$value"}
}
Use Enum structure
Enum EnumConfigManagerErrorCode
{
This_device_is_working_properly = 0
This_device_is_not_configured_correctly = 1
Windows_cannot_load_the_driver_for_this_device = 2
The_driver_for_this_device_might_be_corrupted_or_your_system_may_be_running_low_on_memory_or_other_resources = 3
This_device_is_not_working_properly_One_of_its_drivers_or_your_registry_might_be_corrupted = 4
The_driver_for_this_device_needs_a_resource_that_Windows_cannot_manage = 5
The_boot_configuration_for_this_device_conflicts_with_other_devices = 6
Cannot_filter = 7
The_driver_loader_for_the_device_is_missing = 8
This_device_is_not_working_properly_because_the_controlling_firmware_is_reporting_the_resources_for_the_device_incorrectly = 9
This_device_cannot_start = 10
This_device_failed = 11
This_device_cannot_find_enough_free_resources_that_it_can_use = 12
Windows_cannot_verify_this_devices_resources = 13
This_device_cannot_work_properly_until_you_restart_your_computer = 14
This_device_is_not_working_properly_because_there_is_probably_a_re_enumeration_problem = 15
Windows_cannot_identify_all_the_resources_this_device_uses = 16
This_device_is_asking_for_an_unknown_resource_type = 17
Reinstall_the_drivers_for_this_device = 18
Failure_using_the_VxD_loader = 19
Your_registry_might_be_corrupted = 20
System_failure_Try_changing_the_driver_for_this_device_If_that_does_not_work_see_your_hardware_documentation_Windows_is_removing_this_device = 21
This_device_is_disabled = 22
System_failure_Try_changing_the_driver_for_this_device_If_that_doesnt_work_see_your_hardware_documentation = 23
This_device_is_not_present_is_not_working_properly_or_does_not_have_all_its_drivers_installed = 24
Windows_is_still_setting_up_this_device1 = 25
Windows_is_still_setting_up_this_device2 = 26
This_device_does_not_have_valid_log_configuration = 27
The_drivers_for_this_device_are_not_installed = 28
This_device_is_disabled_because_the_firmware_of_the_device_did_not_give_it_the_required_resources = 29
This_device_is_using_an_Interrupt_Request_IRQ_resource_that_another_device_is_using = 30
This_device_is_not_working_properly_because_Windows_cannot_load_the_drivers_required_for_this_device = 31
}
Examples
Use $ConfigManagerErrorCode_map in a calculated property for Select-Object
<#
this example uses a hashtable to translate raw numeric values for
property "ConfigManagerErrorCode" to friendly text
Note: to use other properties than "ConfigManagerErrorCode", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "ConfigManagerErrorCode"
# to translate other properties, use their translation table instead
$ConfigManagerErrorCode_map = @{
0 = 'This device is working properly.'
1 = 'This device is not configured correctly.'
2 = 'Windows cannot load the driver for this device.'
3 = 'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'
4 = 'This device is not working properly. One of its drivers or your registry might be corrupted.'
5 = 'The driver for this device needs a resource that Windows cannot manage.'
6 = 'The boot configuration for this device conflicts with other devices.'
7 = 'Cannot filter.'
8 = 'The driver loader for the device is missing.'
9 = 'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'
10 = 'This device cannot start.'
11 = 'This device failed.'
12 = 'This device cannot find enough free resources that it can use.'
13 = 'Windows cannot verify this device''s resources.'
14 = 'This device cannot work properly until you restart your computer.'
15 = 'This device is not working properly because there is probably a re-enumeration problem.'
16 = 'Windows cannot identify all the resources this device uses.'
17 = 'This device is asking for an unknown resource type.'
18 = 'Reinstall the drivers for this device.'
19 = 'Failure using the VxD loader.'
20 = 'Your registry might be corrupted.'
21 = 'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'
22 = 'This device is disabled.'
23 = 'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'
24 = 'This device is not present, is not working properly, or does not have all its drivers installed.'
25 = 'Windows is still setting up this device.'
26 = 'Windows is still setting up this device.'
27 = 'This device does not have valid log configuration.'
28 = 'The drivers for this device are not installed.'
29 = 'This device is disabled because the firmware of the device did not give it the required resources.'
30 = 'This device is using an Interrupt Request (IRQ) resource that another device is using.'
31 = 'This device is not working properly because Windows cannot load the drivers required for this device.'
}
#endregion define hashtable
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "ConfigManagerErrorCode", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$ConfigManagerErrorCode = @{
Name = 'ConfigManagerErrorCode'
Expression = {
# property is an array, so process all values
$value = $_.ConfigManagerErrorCode
$ConfigManagerErrorCode_map[[int]$value]
}
}
#endregion define calculated property
# retrieve the instances, and output the properties "Caption" and "ConfigManagerErrorCode". The latter
# is defined by the hashtable in $ConfigManagerErrorCode:
Get-CimInstance -Class Win32_PointingDevice | Select-Object -Property Caption, $ConfigManagerErrorCode
# ...or dump content of property ConfigManagerErrorCode:
$friendlyValues = Get-CimInstance -Class Win32_PointingDevice |
Select-Object -Property $ConfigManagerErrorCode |
Select-Object -ExpandProperty ConfigManagerErrorCode
# output values
$friendlyValues
# output values as comma separated list
$friendlyValues -join ', '
# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $ConfigManagerErrorCode_map to directly translate raw values from an instance
<#
this example uses a hashtable to manually translate raw numeric values
for property "Win32_PointingDevice" to friendly text. This approach is ideal when
there is just one instance to work with.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "Win32_PointingDevice"
# to translate other properties, use their translation table instead
$ConfigManagerErrorCode_map = @{
0 = 'This device is working properly.'
1 = 'This device is not configured correctly.'
2 = 'Windows cannot load the driver for this device.'
3 = 'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'
4 = 'This device is not working properly. One of its drivers or your registry might be corrupted.'
5 = 'The driver for this device needs a resource that Windows cannot manage.'
6 = 'The boot configuration for this device conflicts with other devices.'
7 = 'Cannot filter.'
8 = 'The driver loader for the device is missing.'
9 = 'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'
10 = 'This device cannot start.'
11 = 'This device failed.'
12 = 'This device cannot find enough free resources that it can use.'
13 = 'Windows cannot verify this device''s resources.'
14 = 'This device cannot work properly until you restart your computer.'
15 = 'This device is not working properly because there is probably a re-enumeration problem.'
16 = 'Windows cannot identify all the resources this device uses.'
17 = 'This device is asking for an unknown resource type.'
18 = 'Reinstall the drivers for this device.'
19 = 'Failure using the VxD loader.'
20 = 'Your registry might be corrupted.'
21 = 'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'
22 = 'This device is disabled.'
23 = 'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'
24 = 'This device is not present, is not working properly, or does not have all its drivers installed.'
25 = 'Windows is still setting up this device.'
26 = 'Windows is still setting up this device.'
27 = 'This device does not have valid log configuration.'
28 = 'The drivers for this device are not installed.'
29 = 'This device is disabled because the firmware of the device did not give it the required resources.'
30 = 'This device is using an Interrupt Request (IRQ) resource that another device is using.'
31 = 'This device is not working properly because Windows cannot load the drivers required for this device.'
}
#endregion define hashtable
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to illustrate
the number-to-text translation. To process all instances, replace
"Select-Object -First 1" with a "Foreach-Object" loop, and use
the iterator variable $_ instead of $instance
#>
# query the property
$rawValue = $instance.ConfigManagerErrorCode
# translate raw value to friendly text:
$friendlyName = $ConfigManagerErrorCode_map[[int]$rawValue]
# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<#
this example uses a switch clause to translate raw numeric
values for property "ConfigManagerErrorCode" to friendly text. The switch
clause is embedded into a calculated property so there is
no need to refer to external variables for translation.
Note: to use other properties than "ConfigManagerErrorCode", look up the appropriate
translation switch clause for the property you would like to use instead.
#>
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "ConfigManagerErrorCode", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$ConfigManagerErrorCode = @{
Name = 'ConfigManagerErrorCode'
Expression = {
# property is an array, so process all values
$value = $_.ConfigManagerErrorCode
switch([int]$value)
{
0 {'This device is working properly.'}
1 {'This device is not configured correctly.'}
2 {'Windows cannot load the driver for this device.'}
3 {'The driver for this device might be corrupted, or your system may be running low on memory or other resources.'}
4 {'This device is not working properly. One of its drivers or your registry might be corrupted.'}
5 {'The driver for this device needs a resource that Windows cannot manage.'}
6 {'The boot configuration for this device conflicts with other devices.'}
7 {'Cannot filter.'}
8 {'The driver loader for the device is missing.'}
9 {'This device is not working properly because the controlling firmware is reporting the resources for the device incorrectly.'}
10 {'This device cannot start.'}
11 {'This device failed.'}
12 {'This device cannot find enough free resources that it can use.'}
13 {'Windows cannot verify this device''s resources.'}
14 {'This device cannot work properly until you restart your computer.'}
15 {'This device is not working properly because there is probably a re-enumeration problem.'}
16 {'Windows cannot identify all the resources this device uses.'}
17 {'This device is asking for an unknown resource type.'}
18 {'Reinstall the drivers for this device.'}
19 {'Failure using the VxD loader.'}
20 {'Your registry might be corrupted.'}
21 {'System failure: Try changing the driver for this device. If that does not work, see your hardware documentation. Windows is removing this device.'}
22 {'This device is disabled.'}
23 {'System failure: Try changing the driver for this device. If that doesn''t work, see your hardware documentation.'}
24 {'This device is not present, is not working properly, or does not have all its drivers installed.'}
25 {'Windows is still setting up this device.'}
26 {'Windows is still setting up this device.'}
27 {'This device does not have valid log configuration.'}
28 {'The drivers for this device are not installed.'}
29 {'This device is disabled because the firmware of the device did not give it the required resources.'}
30 {'This device is using an Interrupt Request (IRQ) resource that another device is using.'}
31 {'This device is not working properly because Windows cannot load the drivers required for this device.'}
default {"$value"}
}
}
}
#endregion define calculated property
# retrieve all instances...
Get-CimInstance -ClassName Win32_PointingDevice |
# ...and output properties "Caption" and "ConfigManagerErrorCode". The latter is defined
# by the hashtable in $ConfigManagerErrorCode:
Select-Object -Property Caption, $ConfigManagerErrorCode
Use the Enum from above to auto-translate the code values
<#
this example translates raw values by means of type conversion
the friendly names are defined as enumeration using the
keyword "enum" (PowerShell 5 or better)
The raw value(s) are translated to friendly text by
simply converting them into the enum type.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
enum definition for the property you would like to use instead.
#>
#region define enum with value-to-text translation:
Enum EnumConfigManagerErrorCode
{
This_device_is_working_properly = 0
This_device_is_not_configured_correctly = 1
Windows_cannot_load_the_driver_for_this_device = 2
The_driver_for_this_device_might_be_corrupted_or_your_system_may_be_running_low_on_memory_or_other_resources = 3
This_device_is_not_working_properly_One_of_its_drivers_or_your_registry_might_be_corrupted = 4
The_driver_for_this_device_needs_a_resource_that_Windows_cannot_manage = 5
The_boot_configuration_for_this_device_conflicts_with_other_devices = 6
Cannot_filter = 7
The_driver_loader_for_the_device_is_missing = 8
This_device_is_not_working_properly_because_the_controlling_firmware_is_reporting_the_resources_for_the_device_incorrectly = 9
This_device_cannot_start = 10
This_device_failed = 11
This_device_cannot_find_enough_free_resources_that_it_can_use = 12
Windows_cannot_verify_this_devices_resources = 13
This_device_cannot_work_properly_until_you_restart_your_computer = 14
This_device_is_not_working_properly_because_there_is_probably_a_re_enumeration_problem = 15
Windows_cannot_identify_all_the_resources_this_device_uses = 16
This_device_is_asking_for_an_unknown_resource_type = 17
Reinstall_the_drivers_for_this_device = 18
Failure_using_the_VxD_loader = 19
Your_registry_might_be_corrupted = 20
System_failure_Try_changing_the_driver_for_this_device_If_that_does_not_work_see_your_hardware_documentation_Windows_is_removing_this_device = 21
This_device_is_disabled = 22
System_failure_Try_changing_the_driver_for_this_device_If_that_doesnt_work_see_your_hardware_documentation = 23
This_device_is_not_present_is_not_working_properly_or_does_not_have_all_its_drivers_installed = 24
Windows_is_still_setting_up_this_device1 = 25
Windows_is_still_setting_up_this_device2 = 26
This_device_does_not_have_valid_log_configuration = 27
The_drivers_for_this_device_are_not_installed = 28
This_device_is_disabled_because_the_firmware_of_the_device_did_not_give_it_the_required_resources = 29
This_device_is_using_an_Interrupt_Request_IRQ_resource_that_another_device_is_using = 30
This_device_is_not_working_properly_because_Windows_cannot_load_the_drivers_required_for_this_device = 31
}
#endregion define enum
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to focus on
the number-to-text type conversion.
To process all instances, replace "Select-Object -First 1"
with a "Foreach-Object" loop, and use the iterator variable
$_ instead of $instance
#>
# query the property:
$rawValue = $instance.ConfigManagerErrorCode
#region using strict type conversion
<#
Note: strict type conversion fails if the raw value is
not defined by the enum. So if the list of allowable values
was extended and the enum does not match the value,
an exception is thrown
#>
# convert the property to the enum **ConfigManagerErrorCode**
[EnumConfigManagerErrorCode]$rawValue
# get a comma-separated string:
[EnumConfigManagerErrorCode]$rawValue -join ','
#endregion
#region using operator "-as"
<#
Note: the operator "-as" accepts values not defined
by the enum and returns $null instead of throwing
an exception
#>
$rawValue -as [EnumConfigManagerErrorCode]
#endregion
Enums must cover all possible values. If ConfigManagerErrorCode returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.
ConfigManagerUserConfig
If TRUE, the device is using a user-defined configuration.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, ConfigManagerUserConfig
CreationClassName
Name of the first concrete class to appear in the inheritance chain used in the creation of an instance. When used with the other key properties of the class, the property allows all instances of this class and its subclasses to be uniquely identified.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, CreationClassName
Description
Description of the object.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, Description
DeviceID
Unique identifier of the pointing device with other devices on the system.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID
DeviceInterface
Type of interface used for the pointing device.
DeviceInterface returns a numeric value. To translate it into a meaningful text, use any of the following approaches:
Use a PowerShell Hashtable
$DeviceInterface_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Serial'
4 = 'PS/2'
5 = 'Infrared'
6 = 'HP-HIL'
7 = 'Bus mouse'
8 = 'ADB (Apple Desktop Bus)'
160 = 'Bus mouse DB-9'
161 = 'Bus mouse micro-DIN'
162 = 'USB'
}
Use a switch statement
switch([int]$value)
{
1 {'Other'}
2 {'Unknown'}
3 {'Serial'}
4 {'PS/2'}
5 {'Infrared'}
6 {'HP-HIL'}
7 {'Bus mouse'}
8 {'ADB (Apple Desktop Bus)'}
160 {'Bus mouse DB-9'}
161 {'Bus mouse micro-DIN'}
162 {'USB'}
default {"$value"}
}
Use Enum structure
Enum EnumDeviceInterface
{
Other = 1
Unknown = 2
Serial = 3
PS2 = 4
Infrared = 5
HP_HIL = 6
Bus_mouse = 7
ADB_Apple_Desktop_Bus = 8
Bus_mouse_DB_9 = 160
Bus_mouse_micro_DIN = 161
USB = 162
}
Examples
Use $DeviceInterface_map in a calculated property for Select-Object
<#
this example uses a hashtable to translate raw numeric values for
property "DeviceInterface" to friendly text
Note: to use other properties than "DeviceInterface", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "DeviceInterface"
# to translate other properties, use their translation table instead
$DeviceInterface_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Serial'
4 = 'PS/2'
5 = 'Infrared'
6 = 'HP-HIL'
7 = 'Bus mouse'
8 = 'ADB (Apple Desktop Bus)'
160 = 'Bus mouse DB-9'
161 = 'Bus mouse micro-DIN'
162 = 'USB'
}
#endregion define hashtable
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "DeviceInterface", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$DeviceInterface = @{
Name = 'DeviceInterface'
Expression = {
# property is an array, so process all values
$value = $_.DeviceInterface
$DeviceInterface_map[[int]$value]
}
}
#endregion define calculated property
# retrieve the instances, and output the properties "Caption" and "DeviceInterface". The latter
# is defined by the hashtable in $DeviceInterface:
Get-CimInstance -Class Win32_PointingDevice | Select-Object -Property Caption, $DeviceInterface
# ...or dump content of property DeviceInterface:
$friendlyValues = Get-CimInstance -Class Win32_PointingDevice |
Select-Object -Property $DeviceInterface |
Select-Object -ExpandProperty DeviceInterface
# output values
$friendlyValues
# output values as comma separated list
$friendlyValues -join ', '
# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $DeviceInterface_map to directly translate raw values from an instance
<#
this example uses a hashtable to manually translate raw numeric values
for property "Win32_PointingDevice" to friendly text. This approach is ideal when
there is just one instance to work with.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "Win32_PointingDevice"
# to translate other properties, use their translation table instead
$DeviceInterface_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Serial'
4 = 'PS/2'
5 = 'Infrared'
6 = 'HP-HIL'
7 = 'Bus mouse'
8 = 'ADB (Apple Desktop Bus)'
160 = 'Bus mouse DB-9'
161 = 'Bus mouse micro-DIN'
162 = 'USB'
}
#endregion define hashtable
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to illustrate
the number-to-text translation. To process all instances, replace
"Select-Object -First 1" with a "Foreach-Object" loop, and use
the iterator variable $_ instead of $instance
#>
# query the property
$rawValue = $instance.DeviceInterface
# translate raw value to friendly text:
$friendlyName = $DeviceInterface_map[[int]$rawValue]
# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<#
this example uses a switch clause to translate raw numeric
values for property "DeviceInterface" to friendly text. The switch
clause is embedded into a calculated property so there is
no need to refer to external variables for translation.
Note: to use other properties than "DeviceInterface", look up the appropriate
translation switch clause for the property you would like to use instead.
#>
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "DeviceInterface", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$DeviceInterface = @{
Name = 'DeviceInterface'
Expression = {
# property is an array, so process all values
$value = $_.DeviceInterface
switch([int]$value)
{
1 {'Other'}
2 {'Unknown'}
3 {'Serial'}
4 {'PS/2'}
5 {'Infrared'}
6 {'HP-HIL'}
7 {'Bus mouse'}
8 {'ADB (Apple Desktop Bus)'}
160 {'Bus mouse DB-9'}
161 {'Bus mouse micro-DIN'}
162 {'USB'}
default {"$value"}
}
}
}
#endregion define calculated property
# retrieve all instances...
Get-CimInstance -ClassName Win32_PointingDevice |
# ...and output properties "Caption" and "DeviceInterface". The latter is defined
# by the hashtable in $DeviceInterface:
Select-Object -Property Caption, $DeviceInterface
Use the Enum from above to auto-translate the code values
<#
this example translates raw values by means of type conversion
the friendly names are defined as enumeration using the
keyword "enum" (PowerShell 5 or better)
The raw value(s) are translated to friendly text by
simply converting them into the enum type.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
enum definition for the property you would like to use instead.
#>
#region define enum with value-to-text translation:
Enum EnumDeviceInterface
{
Other = 1
Unknown = 2
Serial = 3
PS2 = 4
Infrared = 5
HP_HIL = 6
Bus_mouse = 7
ADB_Apple_Desktop_Bus = 8
Bus_mouse_DB_9 = 160
Bus_mouse_micro_DIN = 161
USB = 162
}
#endregion define enum
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to focus on
the number-to-text type conversion.
To process all instances, replace "Select-Object -First 1"
with a "Foreach-Object" loop, and use the iterator variable
$_ instead of $instance
#>
# query the property:
$rawValue = $instance.DeviceInterface
#region using strict type conversion
<#
Note: strict type conversion fails if the raw value is
not defined by the enum. So if the list of allowable values
was extended and the enum does not match the value,
an exception is thrown
#>
# convert the property to the enum **DeviceInterface**
[EnumDeviceInterface]$rawValue
# get a comma-separated string:
[EnumDeviceInterface]$rawValue -join ','
#endregion
#region using operator "-as"
<#
Note: the operator "-as" accepts values not defined
by the enum and returns $null instead of throwing
an exception
#>
$rawValue -as [EnumDeviceInterface]
#endregion
Enums must cover all possible values. If DeviceInterface returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.
DoubleSpeedThreshold
One of two acceleration values. The sensitivity of the pointing device doubles (toggles from the first to the second value) when the pointing device moves a distance greater than this threshold value.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, DoubleSpeedThreshold
ErrorCleared
If TRUE, the error reported in LastErrorCode is now cleared.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, ErrorCleared
ErrorDescription
More information about the error recorded in LastErrorCode, and information on any corrective actions that may be taken.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, ErrorDescription
Handedness
Configuration of the pointing device for left-hand or right-hand operation.
Handedness returns a numeric value. To translate it into a meaningful text, use any of the following approaches:
Use a PowerShell Hashtable
$Handedness_map = @{
0 = 'Unknown'
1 = 'Not Applicable'
2 = 'Right Handed Operation'
3 = 'Left Handed Operation'
}
Use a switch statement
switch([int]$value)
{
0 {'Unknown'}
1 {'Not Applicable'}
2 {'Right Handed Operation'}
3 {'Left Handed Operation'}
default {"$value"}
}
Use Enum structure
Enum EnumHandedness
{
Unknown = 0
Not_Applicable = 1
Right_Handed_Operation = 2
Left_Handed_Operation = 3
}
Examples
Use $Handedness_map in a calculated property for Select-Object
<#
this example uses a hashtable to translate raw numeric values for
property "Handedness" to friendly text
Note: to use other properties than "Handedness", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "Handedness"
# to translate other properties, use their translation table instead
$Handedness_map = @{
0 = 'Unknown'
1 = 'Not Applicable'
2 = 'Right Handed Operation'
3 = 'Left Handed Operation'
}
#endregion define hashtable
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "Handedness", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$Handedness = @{
Name = 'Handedness'
Expression = {
# property is an array, so process all values
$value = $_.Handedness
$Handedness_map[[int]$value]
}
}
#endregion define calculated property
# retrieve the instances, and output the properties "Caption" and "Handedness". The latter
# is defined by the hashtable in $Handedness:
Get-CimInstance -Class Win32_PointingDevice | Select-Object -Property Caption, $Handedness
# ...or dump content of property Handedness:
$friendlyValues = Get-CimInstance -Class Win32_PointingDevice |
Select-Object -Property $Handedness |
Select-Object -ExpandProperty Handedness
# output values
$friendlyValues
# output values as comma separated list
$friendlyValues -join ', '
# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $Handedness_map to directly translate raw values from an instance
<#
this example uses a hashtable to manually translate raw numeric values
for property "Win32_PointingDevice" to friendly text. This approach is ideal when
there is just one instance to work with.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "Win32_PointingDevice"
# to translate other properties, use their translation table instead
$Handedness_map = @{
0 = 'Unknown'
1 = 'Not Applicable'
2 = 'Right Handed Operation'
3 = 'Left Handed Operation'
}
#endregion define hashtable
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to illustrate
the number-to-text translation. To process all instances, replace
"Select-Object -First 1" with a "Foreach-Object" loop, and use
the iterator variable $_ instead of $instance
#>
# query the property
$rawValue = $instance.Handedness
# translate raw value to friendly text:
$friendlyName = $Handedness_map[[int]$rawValue]
# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<#
this example uses a switch clause to translate raw numeric
values for property "Handedness" to friendly text. The switch
clause is embedded into a calculated property so there is
no need to refer to external variables for translation.
Note: to use other properties than "Handedness", look up the appropriate
translation switch clause for the property you would like to use instead.
#>
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "Handedness", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$Handedness = @{
Name = 'Handedness'
Expression = {
# property is an array, so process all values
$value = $_.Handedness
switch([int]$value)
{
0 {'Unknown'}
1 {'Not Applicable'}
2 {'Right Handed Operation'}
3 {'Left Handed Operation'}
default {"$value"}
}
}
}
#endregion define calculated property
# retrieve all instances...
Get-CimInstance -ClassName Win32_PointingDevice |
# ...and output properties "Caption" and "Handedness". The latter is defined
# by the hashtable in $Handedness:
Select-Object -Property Caption, $Handedness
Use the Enum from above to auto-translate the code values
<#
this example translates raw values by means of type conversion
the friendly names are defined as enumeration using the
keyword "enum" (PowerShell 5 or better)
The raw value(s) are translated to friendly text by
simply converting them into the enum type.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
enum definition for the property you would like to use instead.
#>
#region define enum with value-to-text translation:
Enum EnumHandedness
{
Unknown = 0
Not_Applicable = 1
Right_Handed_Operation = 2
Left_Handed_Operation = 3
}
#endregion define enum
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to focus on
the number-to-text type conversion.
To process all instances, replace "Select-Object -First 1"
with a "Foreach-Object" loop, and use the iterator variable
$_ instead of $instance
#>
# query the property:
$rawValue = $instance.Handedness
#region using strict type conversion
<#
Note: strict type conversion fails if the raw value is
not defined by the enum. So if the list of allowable values
was extended and the enum does not match the value,
an exception is thrown
#>
# convert the property to the enum **Handedness**
[EnumHandedness]$rawValue
# get a comma-separated string:
[EnumHandedness]$rawValue -join ','
#endregion
#region using operator "-as"
<#
Note: the operator "-as" accepts values not defined
by the enum and returns $null instead of throwing
an exception
#>
$rawValue -as [EnumHandedness]
#endregion
Enums must cover all possible values. If Handedness returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.
HardwareType
Type of hardware used for the Windows pointing device.
Example: “MICROSOFT PS2 MOUSE”
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, HardwareType
InfFileName
Name of the .inf file for the Windows pointing device.
Example: “ab.inf”
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, InfFileName
InfSection
Section of the .inf file that holds configuration information for the Windows pointing device.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, InfSection
InstallDate
Date and time the object was installed. This property does not need a value to indicate that the object is installed.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, InstallDate
IsLocked
If TRUE, the device is locked, preventing user input or output.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, IsLocked
LastErrorCode
Last error code reported by the logical device.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, LastErrorCode
Manufacturer
Name of the processor’s manufacturer.
Example: “GenuineSilicon”
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, Manufacturer
Name
Label by which the object is known. When subclassed, the property can be overridden to be a key property.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, Name
NumberOfButtons
Number of buttons on the pointing device.
Example: 2
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, NumberOfButtons
PNPDeviceID
Windows Plug and Play device identifier of the logical device.
Example: “*PNP030b”
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, PNPDeviceID
PointingType
Type of pointing device.
PointingType returns a numeric value. To translate it into a meaningful text, use any of the following approaches:
Use a PowerShell Hashtable
$PointingType_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Mouse'
4 = 'Track Ball'
5 = 'Track Point'
6 = 'Glide Point'
7 = 'Touch Pad'
8 = 'Touch Screen'
9 = 'Mouse - Optical Sensor'
}
Use a switch statement
switch([int]$value)
{
1 {'Other'}
2 {'Unknown'}
3 {'Mouse'}
4 {'Track Ball'}
5 {'Track Point'}
6 {'Glide Point'}
7 {'Touch Pad'}
8 {'Touch Screen'}
9 {'Mouse - Optical Sensor'}
default {"$value"}
}
Use Enum structure
Enum EnumPointingType
{
Other = 1
Unknown = 2
Mouse = 3
Track_Ball = 4
Track_Point = 5
Glide_Point = 6
Touch_Pad = 7
Touch_Screen = 8
Mouse_Optical_Sensor = 9
}
Examples
Use $PointingType_map in a calculated property for Select-Object
<#
this example uses a hashtable to translate raw numeric values for
property "PointingType" to friendly text
Note: to use other properties than "PointingType", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "PointingType"
# to translate other properties, use their translation table instead
$PointingType_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Mouse'
4 = 'Track Ball'
5 = 'Track Point'
6 = 'Glide Point'
7 = 'Touch Pad'
8 = 'Touch Screen'
9 = 'Mouse - Optical Sensor'
}
#endregion define hashtable
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "PointingType", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$PointingType = @{
Name = 'PointingType'
Expression = {
# property is an array, so process all values
$value = $_.PointingType
$PointingType_map[[int]$value]
}
}
#endregion define calculated property
# retrieve the instances, and output the properties "Caption" and "PointingType". The latter
# is defined by the hashtable in $PointingType:
Get-CimInstance -Class Win32_PointingDevice | Select-Object -Property Caption, $PointingType
# ...or dump content of property PointingType:
$friendlyValues = Get-CimInstance -Class Win32_PointingDevice |
Select-Object -Property $PointingType |
Select-Object -ExpandProperty PointingType
# output values
$friendlyValues
# output values as comma separated list
$friendlyValues -join ', '
# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $PointingType_map to directly translate raw values from an instance
<#
this example uses a hashtable to manually translate raw numeric values
for property "Win32_PointingDevice" to friendly text. This approach is ideal when
there is just one instance to work with.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "Win32_PointingDevice"
# to translate other properties, use their translation table instead
$PointingType_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Mouse'
4 = 'Track Ball'
5 = 'Track Point'
6 = 'Glide Point'
7 = 'Touch Pad'
8 = 'Touch Screen'
9 = 'Mouse - Optical Sensor'
}
#endregion define hashtable
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to illustrate
the number-to-text translation. To process all instances, replace
"Select-Object -First 1" with a "Foreach-Object" loop, and use
the iterator variable $_ instead of $instance
#>
# query the property
$rawValue = $instance.PointingType
# translate raw value to friendly text:
$friendlyName = $PointingType_map[[int]$rawValue]
# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<#
this example uses a switch clause to translate raw numeric
values for property "PointingType" to friendly text. The switch
clause is embedded into a calculated property so there is
no need to refer to external variables for translation.
Note: to use other properties than "PointingType", look up the appropriate
translation switch clause for the property you would like to use instead.
#>
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "PointingType", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$PointingType = @{
Name = 'PointingType'
Expression = {
# property is an array, so process all values
$value = $_.PointingType
switch([int]$value)
{
1 {'Other'}
2 {'Unknown'}
3 {'Mouse'}
4 {'Track Ball'}
5 {'Track Point'}
6 {'Glide Point'}
7 {'Touch Pad'}
8 {'Touch Screen'}
9 {'Mouse - Optical Sensor'}
default {"$value"}
}
}
}
#endregion define calculated property
# retrieve all instances...
Get-CimInstance -ClassName Win32_PointingDevice |
# ...and output properties "Caption" and "PointingType". The latter is defined
# by the hashtable in $PointingType:
Select-Object -Property Caption, $PointingType
Use the Enum from above to auto-translate the code values
<#
this example translates raw values by means of type conversion
the friendly names are defined as enumeration using the
keyword "enum" (PowerShell 5 or better)
The raw value(s) are translated to friendly text by
simply converting them into the enum type.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
enum definition for the property you would like to use instead.
#>
#region define enum with value-to-text translation:
Enum EnumPointingType
{
Other = 1
Unknown = 2
Mouse = 3
Track_Ball = 4
Track_Point = 5
Glide_Point = 6
Touch_Pad = 7
Touch_Screen = 8
Mouse_Optical_Sensor = 9
}
#endregion define enum
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to focus on
the number-to-text type conversion.
To process all instances, replace "Select-Object -First 1"
with a "Foreach-Object" loop, and use the iterator variable
$_ instead of $instance
#>
# query the property:
$rawValue = $instance.PointingType
#region using strict type conversion
<#
Note: strict type conversion fails if the raw value is
not defined by the enum. So if the list of allowable values
was extended and the enum does not match the value,
an exception is thrown
#>
# convert the property to the enum **PointingType**
[EnumPointingType]$rawValue
# get a comma-separated string:
[EnumPointingType]$rawValue -join ','
#endregion
#region using operator "-as"
<#
Note: the operator "-as" accepts values not defined
by the enum and returns $null instead of throwing
an exception
#>
$rawValue -as [EnumPointingType]
#endregion
Enums must cover all possible values. If PointingType returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.
PowerManagementCapabilities
Array of the specific power-related capabilities of a logical device.
PowerManagementCapabilities returns a numeric value. To translate it into a meaningful text, use any of the following approaches:
Use a PowerShell Hashtable
$PowerManagementCapabilities_map = @{
0 = 'Unknown'
1 = 'Not Supported'
2 = 'Disabled'
3 = 'Enabled'
4 = 'Power Saving Modes Entered Automatically'
5 = 'Power State Settable'
6 = 'Power Cycling Supported'
7 = 'Timed Power On Supported'
}
Use a switch statement
switch([int]$value)
{
0 {'Unknown'}
1 {'Not Supported'}
2 {'Disabled'}
3 {'Enabled'}
4 {'Power Saving Modes Entered Automatically'}
5 {'Power State Settable'}
6 {'Power Cycling Supported'}
7 {'Timed Power On Supported'}
default {"$value"}
}
Use Enum structure
Enum EnumPowerManagementCapabilities
{
Unknown = 0
Not_Supported = 1
Disabled = 2
Enabled = 3
Power_Saving_Modes_Entered_Automatically = 4
Power_State_Settable = 5
Power_Cycling_Supported = 6
Timed_Power_On_Supported = 7
}
Examples
Use $PowerManagementCapabilities_map in a calculated property for Select-Object
<#
this example uses a hashtable to translate raw numeric values for
property "PowerManagementCapabilities" to friendly text
Note: to use other properties than "PowerManagementCapabilities", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "PowerManagementCapabilities"
# to translate other properties, use their translation table instead
$PowerManagementCapabilities_map = @{
0 = 'Unknown'
1 = 'Not Supported'
2 = 'Disabled'
3 = 'Enabled'
4 = 'Power Saving Modes Entered Automatically'
5 = 'Power State Settable'
6 = 'Power Cycling Supported'
7 = 'Timed Power On Supported'
}
#endregion define hashtable
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "PowerManagementCapabilities", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$PowerManagementCapabilities = @{
Name = 'PowerManagementCapabilities'
Expression = {
# property is an array, so process all values
$result = foreach($value in $_.PowerManagementCapabilities)
{
# important: convert original value to [int] because
# hashtable keys are type-aware:
$PowerManagementCapabilities_map[[int]$value]
}
# uncomment to get a comma-separated string instead
# of a string array:
$result <#-join ', '#>
}
}
#endregion define calculated property
# retrieve the instances, and output the properties "Caption" and "PowerManagementCapabilities". The latter
# is defined by the hashtable in $PowerManagementCapabilities:
Get-CimInstance -Class Win32_PointingDevice | Select-Object -Property Caption, $PowerManagementCapabilities
# ...or dump content of property PowerManagementCapabilities:
$friendlyValues = Get-CimInstance -Class Win32_PointingDevice |
Select-Object -Property $PowerManagementCapabilities |
Select-Object -ExpandProperty PowerManagementCapabilities
# output values
$friendlyValues
# output values as comma separated list
$friendlyValues -join ', '
# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $PowerManagementCapabilities_map to directly translate raw values from an instance
<#
this example uses a hashtable to manually translate raw numeric values
for property "Win32_PointingDevice" to friendly text. This approach is ideal when there
is just one instance to work with.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "Win32_PointingDevice"
# to translate other properties, use their translation table instead
$PowerManagementCapabilities_map = @{
0 = 'Unknown'
1 = 'Not Supported'
2 = 'Disabled'
3 = 'Enabled'
4 = 'Power Saving Modes Entered Automatically'
5 = 'Power State Settable'
6 = 'Power Cycling Supported'
7 = 'Timed Power On Supported'
}
#endregion define hashtable
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to illustrate
the number-to-text translation. To process all instances, replace
"Select-Object -First 1" with a "Foreach-Object" loop, and use
the iterator variable $_ instead of $instance
#>
# query the property (hint: the property is an array!)
$rawValues = $instance.PowerManagementCapabilities
# translate all raw values into friendly names:
$friendlyNames = foreach($rawValue in $rawValues)
{ $PowerManagementCapabilities_map[[int]$rawValue] }
# output values
$friendlyValues
# output values as comma separated list
$friendlyValues -join ', '
# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use a switch statement inside a calculated property for Select-Object
<#
this example uses a switch clause to translate raw numeric
values for property "PowerManagementCapabilities" to friendly text. The switch
clause is embedded into a calculated property so there is
no need to refer to external variables for translation.
Note: to use other properties than "PowerManagementCapabilities", look up the appropriate
translation switch clause for the property you would like to use instead.
#>
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "PowerManagementCapabilities", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$PowerManagementCapabilities = @{
Name = 'PowerManagementCapabilities'
Expression = {
# property is an array, so process all values
$result = foreach($value in $_.PowerManagementCapabilities)
{
switch([int]$value)
{
0 {'Unknown'}
1 {'Not Supported'}
2 {'Disabled'}
3 {'Enabled'}
4 {'Power Saving Modes Entered Automatically'}
5 {'Power State Settable'}
6 {'Power Cycling Supported'}
7 {'Timed Power On Supported'}
default {"$value"}
}
}
$result
}
}
#endregion define calculated property
# retrieve all instances...
Get-CimInstance -ClassName Win32_PointingDevice |
# ...and output properties "Caption" and "PowerManagementCapabilities". The latter is defined
# by the hashtable in $PowerManagementCapabilities:
Select-Object -Property Caption, $PowerManagementCapabilities
Use the Enum from above to auto-translate the code values
<#
this example translates raw values by means of type conversion
the friendly names are defined as enumeration using the
keyword "enum" (PowerShell 5 or better)
The raw value(s) are translated to friendly text by
simply converting them into the enum type.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
enum definition for the property you would like to use instead.
#>
#region define enum with value-to-text translation:
Enum EnumPowerManagementCapabilities
{
Unknown = 0
Not_Supported = 1
Disabled = 2
Enabled = 3
Power_Saving_Modes_Entered_Automatically = 4
Power_State_Settable = 5
Power_Cycling_Supported = 6
Timed_Power_On_Supported = 7
}
#endregion define enum
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to focus on
the number-to-text type conversion.
To process all instances, replace "Select-Object -First 1"
with a "Foreach-Object" loop, and use the iterator variable
$_ instead of $instance
#>
# query the property:
$rawValue = $instance.PowerManagementCapabilities
#region using strict type conversion
<#
Note: strict type conversion fails if the raw value is
not defined by the enum. So if the list of allowable values
was extended and the enum does not match the value,
an exception is thrown
#>
# convert the property to the enum **PowerManagementCapabilities**
[EnumPowerManagementCapabilities[]]$rawValue
# get a comma-separated string:
[EnumPowerManagementCapabilities[]]$rawValue -join ','
#endregion
#region using operator "-as"
<#
Note: the operator "-as" accepts values not defined
by the enum and returns $null instead of throwing
an exception
#>
$rawValue -as [EnumPowerManagementCapabilities[]]
#endregion
Enums must cover all possible values. If PowerManagementCapabilities returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.
PowerManagementSupported
If TRUE, the device can be power-managed (can be put into suspend mode, and so on). The property does not indicate that power management features are currently enabled, only that the logical device is capable of power management.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, PowerManagementSupported
QuadSpeedThreshold
One of two acceleration threshold values. The system doubles the speed of the pointer movement when the pointer device moves a distance greater than this value. Because this speed increase occurs after the DoubleSpeedThreshold value has been met, the pointer effectively moves at four times its original speed.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, QuadSpeedThreshold
Resolution
Tracking resolution.
Example: 0
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, Resolution
SampleRate
Rate at which the pointing device is polled for input information.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, SampleRate
Status
Current status of an object. Various operational and nonoperational statuses can be defined. Available values:
$values = 'Degraded','Error','Lost Comm','No Contact','NonRecover','OK','Pred Fail','Service','Starting','Stopping','Stressed','Unknown'
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, Status
StatusInfo
State of the logical device. If this property does not apply to the logical device, the value 5 (Not Applicable) should be used.
StatusInfo returns a numeric value. To translate it into a meaningful text, use any of the following approaches:
Use a PowerShell Hashtable
$StatusInfo_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Enabled'
4 = 'Disabled'
5 = 'Not Applicable'
}
Use a switch statement
switch([int]$value)
{
1 {'Other'}
2 {'Unknown'}
3 {'Enabled'}
4 {'Disabled'}
5 {'Not Applicable'}
default {"$value"}
}
Use Enum structure
Enum EnumStatusInfo
{
Other = 1
Unknown = 2
Enabled = 3
Disabled = 4
Not_Applicable = 5
}
Examples
Use $StatusInfo_map in a calculated property for Select-Object
<#
this example uses a hashtable to translate raw numeric values for
property "StatusInfo" to friendly text
Note: to use other properties than "StatusInfo", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "StatusInfo"
# to translate other properties, use their translation table instead
$StatusInfo_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Enabled'
4 = 'Disabled'
5 = 'Not Applicable'
}
#endregion define hashtable
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "StatusInfo", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$StatusInfo = @{
Name = 'StatusInfo'
Expression = {
# property is an array, so process all values
$value = $_.StatusInfo
$StatusInfo_map[[int]$value]
}
}
#endregion define calculated property
# retrieve the instances, and output the properties "Caption" and "StatusInfo". The latter
# is defined by the hashtable in $StatusInfo:
Get-CimInstance -Class Win32_PointingDevice | Select-Object -Property Caption, $StatusInfo
# ...or dump content of property StatusInfo:
$friendlyValues = Get-CimInstance -Class Win32_PointingDevice |
Select-Object -Property $StatusInfo |
Select-Object -ExpandProperty StatusInfo
# output values
$friendlyValues
# output values as comma separated list
$friendlyValues -join ', '
# output values as bullet list
$friendlyValues | ForEach-Object { "- $_" }
Use $StatusInfo_map to directly translate raw values from an instance
<#
this example uses a hashtable to manually translate raw numeric values
for property "Win32_PointingDevice" to friendly text. This approach is ideal when
there is just one instance to work with.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
translation hashtable for the property you would like to use instead.
#>
#region define hashtable to translate raw values to friendly text
# Please note: this hashtable is specific for property "Win32_PointingDevice"
# to translate other properties, use their translation table instead
$StatusInfo_map = @{
1 = 'Other'
2 = 'Unknown'
3 = 'Enabled'
4 = 'Disabled'
5 = 'Not Applicable'
}
#endregion define hashtable
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to illustrate
the number-to-text translation. To process all instances, replace
"Select-Object -First 1" with a "Foreach-Object" loop, and use
the iterator variable $_ instead of $instance
#>
# query the property
$rawValue = $instance.StatusInfo
# translate raw value to friendly text:
$friendlyName = $StatusInfo_map[[int]$rawValue]
# output value
$friendlyName
Use a switch statement inside a calculated property for Select-Object
<#
this example uses a switch clause to translate raw numeric
values for property "StatusInfo" to friendly text. The switch
clause is embedded into a calculated property so there is
no need to refer to external variables for translation.
Note: to use other properties than "StatusInfo", look up the appropriate
translation switch clause for the property you would like to use instead.
#>
#region define calculated property (to be used with Select-Object)
<#
a calculated property is defined by a hashtable with keys "Name" and "Expression"
"Name" defines the name of the property (in this example, it is "StatusInfo", but you can rename it to anything else)
"Expression" defines a scriptblock that calculates the content of this property
in this example, the scriptblock uses the hashtable defined earlier to translate each numeric
value to its friendly text counterpart:
#>
$StatusInfo = @{
Name = 'StatusInfo'
Expression = {
# property is an array, so process all values
$value = $_.StatusInfo
switch([int]$value)
{
1 {'Other'}
2 {'Unknown'}
3 {'Enabled'}
4 {'Disabled'}
5 {'Not Applicable'}
default {"$value"}
}
}
}
#endregion define calculated property
# retrieve all instances...
Get-CimInstance -ClassName Win32_PointingDevice |
# ...and output properties "Caption" and "StatusInfo". The latter is defined
# by the hashtable in $StatusInfo:
Select-Object -Property Caption, $StatusInfo
Use the Enum from above to auto-translate the code values
<#
this example translates raw values by means of type conversion
the friendly names are defined as enumeration using the
keyword "enum" (PowerShell 5 or better)
The raw value(s) are translated to friendly text by
simply converting them into the enum type.
Note: to use other properties than "Win32_PointingDevice", look up the appropriate
enum definition for the property you would like to use instead.
#>
#region define enum with value-to-text translation:
Enum EnumStatusInfo
{
Other = 1
Unknown = 2
Enabled = 3
Disabled = 4
Not_Applicable = 5
}
#endregion define enum
# get one instance:
$instance = Get-CimInstance -Class Win32_PointingDevice | Select-Object -First 1
<#
IMPORTANT: this example processes only one instance to focus on
the number-to-text type conversion.
To process all instances, replace "Select-Object -First 1"
with a "Foreach-Object" loop, and use the iterator variable
$_ instead of $instance
#>
# query the property:
$rawValue = $instance.StatusInfo
#region using strict type conversion
<#
Note: strict type conversion fails if the raw value is
not defined by the enum. So if the list of allowable values
was extended and the enum does not match the value,
an exception is thrown
#>
# convert the property to the enum **StatusInfo**
[EnumStatusInfo]$rawValue
# get a comma-separated string:
[EnumStatusInfo]$rawValue -join ','
#endregion
#region using operator "-as"
<#
Note: the operator "-as" accepts values not defined
by the enum and returns $null instead of throwing
an exception
#>
$rawValue -as [EnumStatusInfo]
#endregion
Enums must cover all possible values. If StatusInfo returns a value that is not defined in the enum, an exception occurs. The exception reports the value that was missing in the enum. To fix, add the missing value to the enum.
Synch
Length of time after which the next interrupt is assumed to indicate the start of a new device packet (partial packets are discarded). In the event that an interrupt is lost, this allows the pointing device driver to synchronize its internal representation of the packet state with the hardware state.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, Synch
SystemCreationClassName
Value of the scoping computer’s CreationClassName property.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, SystemCreationClassName
SystemName
Name of the scoping system.
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property DeviceID, SystemName
Examples
List all instances of Win32_PointingDevice
Get-CimInstance -ClassName Win32_PointingDevice
Learn more about Get-CimInstance
and the deprecated Get-WmiObject
.
View all properties
Get-CimInstance -ClassName Win32_PointingDevice -Property *
View key properties only
Get-CimInstance -ClassName Win32_PointingDevice -KeyOnly
Selecting Properties
To select only some properties, pipe the results to Select-Object -Property a,b,c
with a comma-separated list of the properties you require. Wildcards are permitted.
Get-CimInstance
always returns all properties but only retrieves the ones that you specify. All other properties are empty but still present. That’s why you need to pipe the results into Select-Object
if you want to limit the visible properties, i.e. for reporting.
Selecting Properties
The code below lists all available properties. Remove the ones you do not need:
$properties = 'Availability',
'Caption',
'ConfigManagerErrorCode',
'ConfigManagerUserConfig',
'CreationClassName',
'Description',
'DeviceID',
'DeviceInterface',
'DoubleSpeedThreshold',
'ErrorCleared',
'ErrorDescription',
'Handedness',
'HardwareType',
'InfFileName',
'InfSection',
'InstallDate',
'IsLocked',
'LastErrorCode',
'Manufacturer',
'Name',
'NumberOfButtons',
'PNPDeviceID',
'PointingType',
'PowerManagementCapabilities',
'PowerManagementSupported',
'QuadSpeedThreshold',
'Resolution',
'SampleRate',
'Status',
'StatusInfo',
'Synch',
'SystemCreationClassName',
'SystemName'
Get-CimInstance -ClassName Win32_PointingDevice | Select-Object -Property $properties
Limiting Network Bandwidth
If you work remotely, it makes sense to limit network bandwidth by filtering the properties on the server side, too:
Get-CimInstance -Class Win32_PointingDevice -Property $property |
Select-Object -Property $property
Selecting Instances
To select some instances, use Get-CimInstance and a WMI Query. The wildcard character in WMI Queries is % (and not “*”).
The parameter -Filter runs a simple query.
Listing all instances where the property Caption starts with “A”
Get-CimInstance -Class Win32_PointingDevice -Filter 'Caption LIKE "a%"'
Using a WQL Query
The parameter -Query uses a query similar to SQL and combines the parameters -Filter and -Property. This returns all instances where the property Caption starts with “A”, and returns the properties specified:
Get-CimInstance -Query "SELECT DoubleSpeedThreshold, SystemName, InstallDate, LastErrorCode FROM Win32_PointingDevice WHERE Caption LIKE 'a%'"
Any property you did not specify is still present but empty. You might need to use
Select-Object
to remove all unwanted properties:Get-CimInstance -Query "SELECT DoubleSpeedThreshold, SystemName, InstallDate, LastErrorCode FROM Win32_PointingDevice WHERE Caption LIKE 'a%'" | Select-Object -Property DoubleSpeedThreshold, SystemName, InstallDate, LastErrorCode
Accessing Remote Computers
To access remote systems, you need to have proper permissions. User the parameter -ComputerName to access one or more remote systems.
Authenticating as Current User
# one or more computer names or IP addresses:
$list = 'server1', 'server2'
# authenticate with your current identity:
$result = Get-CimInstance -ClassName Win32_PointingDevice -ComputerName $list
$result
Authenticating as Different User
Use a CIMSession object to authenticate with a new identity:
# one or more computer names or IP addresses:
$list = 'server1', 'server2'
# authenticate with a different identity:
$cred = Get-Credential -Message 'Authenticate to retrieve WMI information:'
$session = New-CimSession -ComputerName $list -Credential $cred
$result = Get-CimInstance Win32_PointingDevice -CimSession $session
# remove the session after use (if you do not plan to re-use it later)
Remove-CimSession -CimSession $session
$result
Learn more about accessing remote computers.
Requirements
To use Win32_PointingDevice, the following requirements apply:
PowerShell
Get-CimInstance
was introduced with PowerShell Version 3.0, which in turn was introduced on clients with Windows 8 and on servers with Windows Server 2012.
If necessary, update Windows PowerShell to Windows PowerShell 5.1, or install PowerShell 7 side-by-side.
Operating System
Win32_PointingDevice was introduced on clients with Windows Vista and on servers with Windows Server 2008.
Namespace
Win32_PointingDevice lives in the Namespace Root/CIMV2. This is the default namespace. There is no need to use the -Namespace parameter in Get-CimInstance
.
Implementation
Win32_PointingDevice is implemented in CIMWin32.dll and defined in CIMWin32.mof. Both files are located in the folder C:\Windows\system32\wbem
:
explorer $env:windir\system32\wbem
notepad $env:windir\system32\wbem\CIMWin32.mof